Spaces:
Running
Running
/* Copyright 2021 Google LLC. All Rights Reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
==============================================================================*/ | |
window.initPair = function(pair){ | |
var isMobile = window.innerWidth <= 820 | |
var sel = d3.select('.' + pair.class).html('') | |
.at({role: 'graphics-document', 'aria-label': pair.ariaLabel}) | |
.on('keydown', function(){ | |
sel.classed('changed', 1) | |
if (d3.event.keyCode != 13) return | |
d3.event.preventDefault() | |
// return | |
pair.str0 = '' | |
pair.str1 = '' | |
updateChart() | |
}) | |
if (!sel.node()) return | |
var optionSel = sel.append('div.options') | |
var inputRow = optionSel.append('div.flex-row.flex-row-textarea') | |
var input1Sel = inputRow.append('textarea.input-1') | |
.st({color: util.colors[1]}).at({cols: 30}) | |
input1Sel.node().value = pair.s1.replace('[MASK]', '_') | |
var input0Sel = inputRow.append('textarea.input-0') | |
.st({color: util.colors[0]}).at({cols: 30}) | |
input0Sel.node().value = pair.s0.replace('[MASK]', '_') | |
if (isMobile){ | |
sel.selectAll('textarea').on('change', updateChart) | |
} | |
var countSel = optionSel.append('div') | |
.append('b').text('Number of Tokens') | |
.append('info').text('ⓘ').call(addLockedTooltip) | |
.datum('The scales are set using the top N tokens for each sentence. <br><br>"Likelihoods" will show more than N tokens if a top completion for one sentence is unlikely for the other sentence.') | |
.parent().parent() | |
.append('div.flex-row') | |
.appendMany('div.button', [30, 200, 1000, 5000, 99999]) | |
.text(d => d > 5000 ? 'All' : d) | |
.st({textAlign: 'center'}) | |
.on('click', d => { | |
pair.count = d | |
updateChart() | |
}) | |
var typeSel = optionSel.append('div') | |
.append('b').text('Chart Type') | |
.append('info').text('ⓘ').call(addLockedTooltip) | |
.datum('"Likelihoods" shows the logits from both models plotted directly with a shared linear scale.<br><br> To better contrast the outputs, "Differences" shows <code>logitA - logitB</code> on the y-axis and <code>mean(logitA, logitB)</code> on the x-axis with separate linear scales.') | |
.parent().parent() | |
.append('div.flex-row') | |
.appendMany('div.button', ['Likelihoods', 'Differences']) | |
.text(d => d) | |
.st({textAlign: 'center'}) | |
.on('click', d => { | |
pair.type = d | |
updateChart() | |
}) | |
var modelSel = optionSel.append('div') | |
.st({display: pair.model == 'BERT' ? 'none' : ''}) | |
.append('b').text('Model') | |
.parent() | |
.append('div.flex-row') | |
.appendMany('div.button', ['BERT', 'Zari']) | |
.text(d => d) | |
.st({textAlign: 'center'}) | |
.on('click', d => { | |
pair.model = d | |
updateChart() | |
}) | |
// TODO add loading spinner | |
var updateSel = optionSel | |
.append('div.flex-row') | |
.append('div.button.update').on('click', updateChart) | |
.text('Update') | |
.st({display: isMobile ? 'none' : ''}) | |
var warningSel = optionSel.append('div.warning') | |
.text('⚠️Some of the text this model was trained on includes harmful stereotypes. This is a tool to uncover these associations—not an endorsement of them.') | |
var resetSel = optionSel.append('div.reset') | |
.html('<span>↻</span> Reset') | |
.on('click', () => { | |
pair = JSON.parse(pair.pairStr) | |
pair.pairStr = JSON.stringify(pair) | |
input0Sel.node().value = pair.s0 | |
input1Sel.node().value = pair.s1 | |
updateChart(true) | |
}) | |
if (pair.alts){ | |
d3.select('.' + pair.class + '-alts').html('') | |
.classed('alt-block', 1).st({display: 'block'}) | |
.appendMany('span.p-button-link', pair.alts) | |
.html(d => d.str) | |
.on('click', d => { | |
input0Sel.node().value = d.s0 | |
input1Sel.node().value = d.s1 | |
updateChart() | |
}) | |
} | |
var margin = {bottom: 50, left: 25, top: 5, right: 20} | |
var graphSel = sel.append('div.graph') | |
var totalWidth = graphSel.node().offsetWidth | |
var width = totalWidth - margin.left - margin.right | |
var c = d3.conventions({ | |
sel: graphSel.append('div').st({marginTop: isMobile ? 20 : -5}), | |
width, | |
height: width, | |
margin, | |
layers: 'sdds', | |
}) | |
var nTicks = 4 | |
var tickScale = d3.scaleLinear().range([0, c.width]) | |
c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1)) | |
.at({d: d => `M ${.5 + Math.round(tickScale(d/nTicks))} 0 V ${c.height}`}) | |
c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1)) | |
.at({d: d => `M 0 ${.5 + Math.round(tickScale(d/nTicks))} H ${c.width}`}) | |
var annotationSel = c.layers[1].appendMany('div.annotations', pair.annotations) | |
.translate(d => d.pos) | |
.html(d => d.str) | |
.st({color: d => d.color, width: 250, postion: 'absolute'}) | |
var scatter = window.initScatter(c) | |
updateChart(true) | |
async function updateChart(isFirst){ | |
sel.classed('changed', 0) | |
warningSel.st({opacity: isFirst ? 0 : 1}) | |
resetSel.st({opacity: isFirst ? 0 : 1}) | |
annotationSel.st({opacity: isFirst ? 1 : 0}) | |
countSel.classed('active', d => d == pair.count) | |
typeSel.classed('active', d => d == pair.type) | |
modelSel.classed('active', d => d == pair.model) | |
function getStr(sel){ | |
return sel.node().value.replace('_', '[MASK]') | |
} | |
var modelPath = pair.model == 'Zari' ? 'embed_zari_cda' : 'embed' | |
pair.s0 = input0Sel.node().value.replace('_', '[MASK]') | |
pair.s1 = input1Sel.node().value.replace('_', '[MASK]') | |
updateSel.classed('loading', 1) | |
var vals0 = await post(modelPath, {sentence: pair.s0}) | |
var vals1 = await post(modelPath, {sentence: pair.s1}) | |
updateSel.classed('loading', 0) | |
var allTokens = vals0.map((v0, i) => { | |
return {word: tokenizer.vocab[i], v0, i, v1: vals1[i]} | |
}) | |
allTokens.forEach(d => { | |
d.dif = d.v0 - d.v1 | |
d.meanV = (d.v0 + d.v1) / 2 | |
d.isVisible = false | |
}) | |
_.sortBy(allTokens, d => -d.v1).forEach((d, i) => d.v1i = i) | |
_.sortBy(allTokens, d => -d.v0).forEach((d, i) => d.v0i = i) | |
var topTokens = allTokens.filter(d => d.v0i <= pair.count || d.v1i <= pair.count) | |
var logitExtent = d3.extent(topTokens.map(d => d.v0).concat(topTokens.map(d => d.v1))) | |
var tokens = allTokens | |
.filter(d => logitExtent[0] <= d.v0 && logitExtent[0] <= d.v1) | |
var mag = logitExtent[1] - logitExtent[0] | |
logitExtent = [logitExtent[0] - mag*.002, logitExtent[1] + mag*.002] | |
if (pair.type == 'Differences') tokens = _.sortBy(allTokens, d => -d.meanV).slice(0, pair.count) | |
tokens.forEach(d => { | |
d.isVisible = true | |
}) | |
var maxDif = d3.max(d3.extent(tokens, d => d.dif).map(Math.abs)) | |
var color = palette(-maxDif*.8, maxDif*.8) | |
updateSentenceLabels() | |
if (pair.type == 'Likelihoods'){ | |
drawXY() | |
} else{ | |
drawRotated() | |
} | |
sel.classed('is-xy', pair.type == 'Likelihoods') | |
sel.classed('is-rotate', pair.type != 'Likelihoods') | |
function drawXY(){ | |
c.x.domain(logitExtent) | |
c.y.domain(logitExtent) | |
d3.drawAxis(c) | |
var s = {30: 4, 200: 3, 1000: 3}[pair.count] || 2 | |
var scatterData = allTokens.map(d => { | |
var x = c.x(d.v0) | |
var y = c.y(d.v1) | |
var fill = color(d.dif) | |
var dif = d.dif | |
var word = d.word | |
var show = '' | |
var isVisible = d.isVisible | |
return {x, y, s, dif, fill, word, show, isVisible} | |
}) | |
var textCandidates = _.sortBy(scatterData.filter(d => d.isVisible), d => d.dif) | |
d3.nestBy(textCandidates.slice(0, 1000), d => Math.round(d.y/10)) | |
.forEach(d => d[0].show = 'uf') | |
d3.nestBy(textCandidates.reverse().slice(0, 1000), d => Math.round(d.y/10)) | |
.forEach(d => d[0].show = 'lr') | |
logitExtent.pair = pair | |
scatter.draw(c, scatterData, true) | |
c.svg.selectAppend('text.x-axis-label.xy-only') | |
.translate([c.width/2, c.height + 24]) | |
.text(pair.label0 ? ' __ likelihood, ' + pair.label0 + ' sentence →' : '__ likelihood, sentence two →') | |
.st({fill: util.colors[0]}) | |
.at({textAnchor: 'middle'}) | |
c.svg.selectAppend('g.y-axis-label.xy-only') | |
.translate([c.width + 20, c.height/2]) | |
.selectAppend('text') | |
.text(pair.label1 ? ' __ likelihood, ' + pair.label1 + ' sentence →' : '__ likelihood, sentence one →') | |
.st({fill: util.colors[1]}) | |
.at({textAnchor: 'middle', transform: 'rotate(-90)'}) | |
} | |
function drawRotated(){ | |
c.x.domain(d3.extent(tokens, d => d.meanV)) | |
c.y.domain([maxDif, -maxDif]) | |
d3.drawAxis(c) | |
var scatterData = allTokens.map(d => { | |
var x = c.x(d.meanV) | |
var y = c.y(d.dif) | |
var fill = color(d.dif) | |
var word = d.word | |
var show = '' | |
var isVisible = d.isVisible | |
return {x, y, s: 2, fill, word, show, isVisible} | |
}) | |
scatterData.forEach(d => { | |
d.dx = d.x - c.width/2 | |
d.dy = d.y - c.height/2 | |
}) | |
var textCandidates = _.sortBy(scatterData, d => -d.dx*d.dx - d.dy*d.dy) | |
.filter(d => d.isVisible) | |
.slice(0, 5000) | |
d3.nestBy(textCandidates, d => Math.round(12*Math.atan2(d.dx, d.dy))) | |
.map(d => d[0]) | |
.forEach(d => d.show = (d.dy < 0 ? 'u' : 'l') + (d.dx < 0 ? 'l' : 'r')) | |
scatter.draw(c, scatterData, false) | |
c.svg.selectAppend('text.rotate-only.x-axis-label') | |
.translate([c.width/2, c.height + 24]) | |
.text('__ likelihood, both sentences →') | |
.at({textAnchor: 'middle'}) | |
.st({fill: '#000'}) | |
c.svg.selectAll('g.rotate-only.sent-1,g.rotate-only.sent-1').remove() | |
c.svg.selectAppend('g.rotate-only.sent-1') | |
.translate([c.width + 20, c.height/2]) | |
.append('text') | |
.text(`Higher likelihood, ${pair.label1 ? pair.label1 + ' sentence ' : 'sentence one'} →`) | |
.at({textAnchor: 'start', transform: 'rotate(-90)', x: 20}) | |
.st({fill: util.colors[1]}) | |
c.svg.selectAppend('g.rotate-only.sent-1') | |
.translate([c.width + 20, c.height/2 + 0]) | |
.append('text') | |
.text(`← Higher likelihood, ${pair.label0 ? pair.label0 + ' sentence ' : 'sentence two'}`) | |
.at({textAnchor: 'end', transform: 'rotate(-90)', x: -20}) | |
.st({fill: util.colors[0]}) | |
} | |
} | |
function updateSentenceLabels(){ | |
var t0 = tokenizer.tokenize(pair.s0) | |
var t1 = tokenizer.tokenize(pair.s1) | |
var i = 0 | |
while (t0[i] == t1[i] && i < t0.length) i++ | |
var j = 1 | |
while (t0[t0.length - j] == t1[t1.length - j] && j < t0.length) j++ | |
pair.label0 = tokens2origStr(t0, pair.s0) | |
pair.label1 = tokens2origStr(t1, pair.s1) | |
function tokens2origStr(t, s){ | |
var tokenStr = tokenizer.decode(t.slice(i, -j + 1)).trim() | |
var lowerStr = s.toLowerCase() | |
var startI = lowerStr.indexOf(tokenStr) | |
return s.slice(startI, startI + tokenStr.length) | |
} | |
if ( | |
!pair.label0.length || | |
!pair.label1.length || | |
pair.label0.length > 15 || | |
pair.label1.length > 15){ | |
pair.label0 = '' | |
pair.label1 = '' | |
} | |
// console.log(i, j, pair.label0, pair.label1) | |
} | |
} | |
if (window.init) init() | |