Spaces:
Sleeping
Sleeping
import gradio as gr | |
from easyocr import Reader | |
from PIL import Image | |
import io | |
import json | |
import csv | |
import openai | |
import ast | |
import os | |
from deta import Deta | |
###################### | |
import requests | |
import json | |
import os | |
import openai | |
class OpenAI_API: | |
def __init__(self): | |
self.openai_api_key = '' | |
def single_request(self, address_text): | |
openai.api_type = "azure" | |
openai.api_base = "https://damlaopenai.openai.azure.com/" | |
openai.api_version = "2022-12-01" | |
openai.api_key = os.getenv("API_KEY") | |
response = openai.Completion.create( | |
engine="Davinci-003", | |
prompt=address_text, | |
temperature=0.9, | |
max_tokens=256, | |
top_p=1.0, | |
n=1, | |
logprobs=0, | |
echo=False, | |
stop=None, | |
frequency_penalty=0, | |
presence_penalty=0, | |
best_of=1) | |
return response | |
######################## | |
openai.api_key = os.getenv('API_KEY') | |
reader = Reader(["tr"]) | |
def get_parsed_address(input_img): | |
address_full_text = get_text(input_img) | |
return openai_response(address_full_text) | |
def preprocess_img(inp_image): | |
gray = cv2.cvtColor(inp_image, cv2.COLOR_BGR2GRAY) | |
gray_img = cv2.bitwise_not(gray) | |
return gray_img | |
def get_text(input_img): | |
result = reader.readtext(input_img, detail=0) | |
return " ".join(result) | |
def save_csv(mahalle, il, sokak, apartman): | |
adres_full = [mahalle, il, sokak, apartman] | |
with open("adress_book.csv", "a", encoding="utf-8") as f: | |
write = csv.writer(f) | |
write.writerow(adres_full) | |
return adres_full | |
def get_json(mahalle, il, sokak, apartman): | |
adres = {"mahalle": mahalle, "il": il, "sokak": sokak, "apartman": apartman} | |
dump = json.dumps(adres, indent=4, ensure_ascii=False) | |
return dump | |
def write_db(data_dict): | |
# 2) initialize with a project key | |
deta_key = os.getenv('DETA_KEY') | |
deta = Deta(deta_key) | |
# 3) create and use as many DBs as you want! | |
users = deta.Base("deprem-ocr") | |
users.insert(data_dict) | |
def text_dict(input): | |
eval_result = ast.literal_eval(input) | |
write_db(eval_result) | |
return ( | |
str(eval_result['city']), | |
str(eval_result['distinct']), | |
str(eval_result['neighbourhood']), | |
str(eval_result['street']), | |
str(eval_result['address']), | |
str(eval_result['tel']), | |
str(eval_result['name_surname']), | |
str(eval_result['no']), | |
) | |
def openai_response(ocr_input): | |
prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from | |
plain text input and especially from emergency text that carries address information, your inputs can be text | |
of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it | |
to only extract keys that are shared as an example in the examples section, if a key value is not found in the | |
text input, then it should be ignored. Have only city, distinct, neighbourhood, | |
street, no, tel, name_surname, address Examples: Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, | |
Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz | |
Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}} | |
Input: {ocr_input} | |
Output: | |
""" | |
openai_client = OpenAI_API() | |
response = openai_client.single_request(ocr_input) | |
resp = response["choices"][0]["text"] | |
print(resp) | |
resp = eval(resp.replace("'{", "{").replace("}'", "}")) | |
resp["input"] = ocr_input | |
dict_keys = [ | |
'city', | |
'distinct', | |
'neighbourhood', | |
'street', | |
'no', | |
'tel', | |
'name_surname', | |
'address', | |
'input', | |
] | |
for key in dict_keys: | |
if key not in resp.keys(): | |
resp[key] = '' | |
return resp | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Enkaz Bildirme Uygulaması | |
""") | |
gr.Markdown("Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın.") | |
with gr.Row(): | |
img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇") | |
ocr_result = gr.Textbox(label="Metin yükleyin 👇 ") | |
open_api_text = gr.Textbox(label="Tam Adres") | |
submit_button = gr.Button(label="Yükle") | |
with gr.Column(): | |
with gr.Row(): | |
city = gr.Textbox(label="İl") | |
distinct = gr.Textbox(label="İlçe") | |
with gr.Row(): | |
neighbourhood = gr.Textbox(label="Mahalle") | |
street = gr.Textbox(label="Sokak/Cadde/Bulvar") | |
with gr.Row(): | |
tel = gr.Textbox(label="Telefon") | |
with gr.Row(): | |
name_surname = gr.Textbox(label="İsim Soyisim") | |
address = gr.Textbox(label="Adres") | |
with gr.Row(): | |
no = gr.Textbox(label="Kapı No") | |
submit_button.click(get_parsed_address, inputs = img_area, outputs = open_api_text, api_name="upload_image") | |
ocr_result.change(openai_response, ocr_result, open_api_text, api_name="upload-text") | |
open_api_text.change(text_dict, open_api_text, [city, distinct, neighbourhood, street, address, tel, name_surname, no]) | |
if __name__ == "__main__": | |
demo.launch() |