Spaces:
Running
on
Zero
Running
on
Zero
from transformers import Owlv2Processor, Owlv2ForObjectDetection | |
from typing import List | |
import os | |
import numpy as np | |
import supervision as sv | |
import uuid | |
import torch | |
from tqdm import tqdm | |
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
import spaces | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble") | |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device) | |
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() | |
MASK_ANNOTATOR = sv.MaskAnnotator() | |
LABEL_ANNOTATOR = sv.LabelAnnotator() | |
def calculate_end_frame_index(source_video_path): | |
video_info = sv.VideoInfo.from_video_path(source_video_path) | |
return min( | |
video_info.total_frames, | |
video_info.fps * 2 | |
) | |
def annotate_image( | |
input_image, | |
detections, | |
labels | |
) -> np.ndarray: | |
output_image = MASK_ANNOTATOR.annotate(input_image, detections) | |
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections) | |
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) | |
return output_image | |
def process_video( | |
input_video, | |
labels, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
labels = labels.split(",") | |
video_info = sv.VideoInfo.from_video_path(input_video) | |
total = calculate_end_frame_index(input_video) | |
frame_generator = sv.get_video_frames_generator( | |
source_path=input_video, | |
end=total | |
) | |
result_file_name = f"{uuid.uuid4()}.mp4" | |
result_file_path = os.path.join("./outputs", result_file_name) | |
with sv.VideoSink(result_file_path, video_info=video_info) as sink: | |
for _ in tqdm(range(total), desc="Processing video.."): | |
frame = next(frame_generator) | |
# list of dict of {"box": box, "mask":mask, "score":score, "label":label} | |
results = query(frame, labels) | |
detections = sv.Detections.from_transformers(results[0]) | |
final_labels = [] | |
for id in results[0]["labels"]: | |
final_labels.append(labels[id]) | |
frame = annotate_image( | |
input_image=frame, | |
detections=detections, | |
labels=final_labels, | |
) | |
sink.write_frame(frame) | |
return result_file_path | |
def query(image, texts): | |
inputs = processor(text=texts, images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
target_sizes = torch.Tensor([image.shape[:-1]]) | |
results = processor.post_process_object_detection(outputs=outputs, threshold=0.3, target_sizes=target_sizes) | |
return results | |
with gr.Blocks() as demo: | |
gr.Markdown("## Zero-shot Object Tracking with OWLv2 🦉") | |
gr.Markdown("This is a demo for zero-shot object tracking using [OWLv2](https://huggingface.co/google/owlv2-base-patch16-ensemble) model by Google.") | |
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. 👇") | |
with gr.Tab(label="Video"): | |
with gr.Row(): | |
input_video = gr.Video( | |
label='Input Video' | |
) | |
output_video = gr.Video( | |
label='Output Video' | |
) | |
with gr.Row(): | |
candidate_labels = gr.Textbox( | |
label='Labels', | |
placeholder='Labels separated by a comma', | |
) | |
submit = gr.Button() | |
gr.Examples( | |
fn=process_video, | |
examples=[["./cats.mp4", "dog,cat"]], | |
inputs=[ | |
input_video, | |
candidate_labels, | |
], | |
outputs=output_video | |
) | |
submit.click( | |
fn=process_video, | |
inputs=[input_video, candidate_labels], | |
outputs=output_video | |
) | |
demo.launch(debug=False, show_error=True) | |