Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
@spaces.GPU
|
8 |
+
def infer_diagram(image, question):
|
9 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ai2d-448").to("cuda")
|
10 |
+
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ai2d-448")
|
11 |
+
|
12 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
|
13 |
+
|
14 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
15 |
+
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
16 |
+
|
17 |
+
@spaces.GPU
|
18 |
+
def infer_ocrvqa(image, question):
|
19 |
+
model = Pix2StructForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda")
|
20 |
+
processor = Pix2StructProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896e")
|
21 |
+
|
22 |
+
inputs = processor(images=image,text=question, return_tensors="pt").to("cuda")
|
23 |
+
|
24 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
25 |
+
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
26 |
+
|
27 |
+
@spaces.GPU
|
28 |
+
def infer_infographics(image, question):
|
29 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-infovqa-896").to("cuda")
|
30 |
+
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-infovqa-896")
|
31 |
+
|
32 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
|
33 |
+
|
34 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
35 |
+
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
36 |
+
@spaces.GPU
|
37 |
+
def infer_doc(image, question):
|
38 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda")
|
39 |
+
|
40 |
+
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-docvqa-896")
|
41 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
|
42 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
43 |
+
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
44 |
+
|
45 |
+
css = """
|
46 |
+
#mkd {
|
47 |
+
height: 500px;
|
48 |
+
overflow: auto;
|
49 |
+
border: 1px solid #ccc;
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
with gr.Blocks(css=css) as demo:
|
54 |
+
gr.HTML("<h1><center>PaliGemma Fine-tuned on Documents π<center><h1>")
|
55 |
+
gr.HTML("<h3><center>This Space is built for you to compare different PaliGemma models fine-tuned on document tasks. β‘</h3>")
|
56 |
+
gr.HTML("<h3><center>Each tab in this app demonstrates PaliGemma models fine-tuned on document question answering, infographics question answering, diagram understanding, and reading comprehension from images. πππ<h3>")
|
57 |
+
gr.HTML("<h3><center>Models are downloaded on the go, so first inference in each tab might take time if it's not already downloaded.<h3>")
|
58 |
+
|
59 |
+
with gr.Tab(label="Visual Question Answering over Documents"):
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
input_img = gr.Image(label="Input Document")
|
63 |
+
question = gr.Text(label="Question")
|
64 |
+
submit_btn = gr.Button(value="Submit")
|
65 |
+
output = gr.Text(label="Answer")
|
66 |
+
gr.Examples(
|
67 |
+
[["assets/docvqa_example.png", "How many items are sold?"]],
|
68 |
+
inputs = [input_img, question],
|
69 |
+
outputs = [output],
|
70 |
+
fn=infer_doc,
|
71 |
+
label='Click on any Examples below to get Document Question Answering results quickly π'
|
72 |
+
)
|
73 |
+
|
74 |
+
submit_btn.click(infer_doc, [input_img, question], [output])
|
75 |
+
|
76 |
+
with gr.Tab(label="Visual Question Answering over Infographics"):
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
input_img = gr.Image(label="Input Image")
|
80 |
+
question = gr.Text(label="Question")
|
81 |
+
submit_btn = gr.Button(value="Submit")
|
82 |
+
output = gr.Text(label="Answer")
|
83 |
+
gr.Examples(
|
84 |
+
[["assets/infographics_example (1).jpeg", "What is this infographic about?"]],
|
85 |
+
inputs = [input_img, question],
|
86 |
+
outputs = [output],
|
87 |
+
fn=infer_infovqa,
|
88 |
+
label='Click on any Examples below to get Infographics QA results quickly π'
|
89 |
+
)
|
90 |
+
|
91 |
+
submit_btn.click(infer_infographics, [input_img, question], [output])
|
92 |
+
with gr.Tab(label="Reading from Images"):
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
input_img = gr.Image(label="Input Document")
|
96 |
+
question = gr.Text(label="Question")
|
97 |
+
submit_btn = gr.Button(value="Submit")
|
98 |
+
output = gr.Text(label="Infer")
|
99 |
+
submit_btn.click(infer_ocrvqa, [input_img, question], [output])
|
100 |
+
gr.Examples(
|
101 |
+
[["assets/ocrvqa.jpg", "Who is the author of this book?"]],
|
102 |
+
inputs = [input_img, question],
|
103 |
+
outputs = [output],
|
104 |
+
fn=infer_doc,
|
105 |
+
label='Click on any Examples below to get UI question answering results quickly π'
|
106 |
+
)
|
107 |
+
with gr.Tab(label="Diagram Understanding"):
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
input_img = gr.Image(label="Input Diagram")
|
111 |
+
question = gr.Text(label="Question")
|
112 |
+
submit_btn = gr.Button(value="Submit")
|
113 |
+
output = gr.Text(label="Infer")
|
114 |
+
submit_btn.click(infer_diagram, [input_img, question], [output])
|
115 |
+
gr.Examples(
|
116 |
+
[["assets/diagram.png", "What is the diagram showing?"]],
|
117 |
+
inputs = [input_img, question],
|
118 |
+
outputs = [output],
|
119 |
+
fn=infer_doc,
|
120 |
+
label='Click on any Examples below to get UI question answering results quickly π'
|
121 |
+
)
|
122 |
+
|
123 |
+
demo.launch(debug=True)
|