File size: 6,447 Bytes
1d4f55a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import streamlit as st
from streamlit_extras.switch_page_button import switch_page


translations = {
'en': {'title': 'DenseConnector',
    'original_tweet': 
       """
       [Original tweet](https://twitter.com/mervenoyann/status/1796089181988352216) (May 30, 2024)
       """,
    'tweet_1':
        """
        Do we fully leverage image encoders in vision language models? 👀  
        A new paper built a dense connector that does it better! Let's dig in 🧶 
        """,
    'tweet_2':
        """
        VLMs consist of an image encoder block, a projection layer that projects image embeddings to text embedding space and then a text decoder sequentially connected 📖  
        This [paper](https://t.co/DPQzbj0eWm) explores using intermediate states of image encoder and not a single output 🤩 
        """,
    'tweet_3':
        """
        The authors explore three different ways of instantiating dense connector: sparse token integration, sparse channel integration and dense channel integration (each of them just take intermediate outputs and put them together in different ways, see below).  
        """,
    'tweet_4':
        """
        They explore all three of them integrated to LLaVA 1.5 and found out each of the new models are superior to the original LLaVA 1.5.  
        """,
    'tweet_5':
        """
        I tried the [model](https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B) and it seems to work very well 🥹  
        The authors have released various [checkpoints](https://t.co/iF8zM2qvDa) based on different decoders (Vicuna 7/13B and Llama 3-8B). 
        """,
    'ressources':
        """
        Ressources:  
        [Dense Connector for MLLMs](https://arxiv.org/abs/2405.13800) 
        by Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, Jingdong Wang (2024)  
        [GitHub](https://github.com/HJYao00/DenseConnector)
        """
      },
'fr': {
    'title': 'DenseConnector',
    'original_tweet': 
       """
       [Tweet de base](https://twitter.com/mervenoyann/status/1796089181988352216) (en anglais) (30 mai 2024)
       """,
    'tweet_1':
        """
        Exploitons-nous pleinement les encodeurs d'images dans les modèles de langage/vision ? 👀  
        Un nouveau papier a construit un connecteur dense qui le fait mieux ! Creusons un peu 🧶 
        """,
    'tweet_2':
        """
        Les VLM se composent d'un bloc encodeur d'images, d'une couche de projection qui projette les enchâssements d'images dans l'espace d'enchâssement du texte, puis d'un décodeur de texte connecté séquentiellement 📖.  
        Ce [papier](https://t.co/DPQzbj0eWm) explore l'utilisation d'états intermédiaires de l'encodeur d'images et non d'une sortie unique 🤩 
        """,
    'tweet_3':
        """
        Les auteurs explorent trois manières différentes d'instancier un connecteur dense : l'intégration de tokens épars, l'intégration de canaux épars et l'intégration de canaux denses (chacune d'entre elles prend simplement des sorties intermédiaires et les rassemble de différentes manières, voir ci-dessous).  
        """,
    'tweet_4':
        """    
        Ils ont exploré les trois modèles intégrés à LLaVA 1.5 et ont constaté que chacun des nouveaux modèles est supérieur au LLaVA 1.5 original.  
        """,
    'tweet_5':
        """
        J'ai essayé le [modèle](https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B) et il semble fonctionner très bien 🥹  
        Les auteurs ont publié plusieurs [checkpoints](https://t.co/iF8zM2qvDa) basés sur différents décodeurs (Vicuna 7/13B et Llama 3-8B). 
        """,
    'ressources':
        """
        Ressources :  
        [Dense Connector for MLLMs](https://arxiv.org/abs/2405.13800) 
        de Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, Jingdong Wang (2024)  
        [GitHub](https://github.com/HJYao00/DenseConnector)
        """
    }
}    


def language_selector():
    languages = {'EN': '🇬🇧', 'FR': '🇫🇷'}
    selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector')
    return 'en' if selected_lang == 'EN' else 'fr'

left_column, right_column = st.columns([5, 1])

# Add a selector to the right column
with right_column:
    lang = language_selector()

# Add a title to the left column
with left_column:
    st.title(translations[lang]["title"])
    
st.success(translations[lang]["original_tweet"], icon="ℹ️")
st.markdown(""" """)

st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True)
st.markdown(""" """)

st.image("pages/DenseConnector/image_1.jpg", use_column_width=True)
st.markdown(""" """)

st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True)
st.markdown(""" """)

st.image("pages/DenseConnector/image_2.jpg", use_column_width=True)
st.markdown(""" """)

st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True)
st.markdown(""" """)

st.image("pages/DenseConnector/image_3.jpg", use_column_width=True)
st.markdown(""" """)

st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True)
st.markdown(""" """)

st.image("pages/DenseConnector/image_4.jpg", use_column_width=True)
st.markdown(""" """)

st.markdown(translations[lang]["tweet_5"], unsafe_allow_html=True)
st.markdown(""" """)

st.image("pages/DenseConnector/image_5.jpg", use_column_width=True)
st.markdown(""" """)

st.info(translations[lang]["ressources"], icon="📚")  

st.markdown(""" """)
st.markdown(""" """)
st.markdown(""" """)
col1, col2, col3= st.columns(3)
with col1:
    if lang == "en":
        if st.button('Previous paper', use_container_width=True):
            switch_page("CuMo")
    else:
        if st.button('Papier précédent', use_container_width=True):
            switch_page("CuMo")
with col2:
    if lang == "en":
        if st.button("Home", use_container_width=True):
            switch_page("Home")
    else:
        if st.button("Accueil", use_container_width=True):
            switch_page("Home")
with col3:
    if lang == "en":
        if st.button("Next paper", use_container_width=True):
            switch_page("Depth Anything v2")
    else:
        if st.button("Papier suivant", use_container_width=True):
            switch_page("Depth Anything v2")