vision_papers / pages /7_Backbone.py
lbourdois's picture
Upload 174 files
94e735e verified
raw
history blame
2.29 kB
import streamlit as st
from streamlit_extras.switch_page_button import switch_page
st.title("Backbone")
st.success("""[Original tweet](https://x.com/mervenoyann/status/1749841426177810502) (January 23, 2024)""", icon="ℹ️")
st.markdown(""" """)
st.markdown("""Many cutting-edge computer vision models consist of multiple stages:
➰ backbone extracts the features,
➰ neck refines the features,
➰ head makes the detection for the task.
Implementing this is cumbersome, so πŸ€— Transformers has an API for this: Backbone!
""")
st.markdown(""" """)
st.image("pages/Backbone/image_1.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown("""
Let's see an example of such model.
Assuming we would like to initialize a multi-stage instance segmentation model with ResNet backbone and MaskFormer neck and a head, you can use the backbone API like following (left comments for clarity) πŸ‘‡
""")
st.markdown(""" """)
st.image("pages/Backbone/image_2.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown("""One can also use a backbone just to get features from any stage. You can initialize any backbone with `AutoBackbone` class.
See below how to initialize a backbone and getting the feature maps at any stage πŸ‘‡
""")
st.markdown(""" """)
st.image("pages/Backbone/image_3.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown("""
Backbone API also supports any timm backbone of your choice! Check out a variation of timm backbones [here](https://t.co/Voiv0QCPB3).
""")
st.markdown(""" """)
st.image("pages/Backbone/image_4.jpeg", use_column_width=True)
st.markdown(""" """)
st.markdown("""
Leaving some links πŸ”—
πŸ“– I've created a [notebook](https://t.co/PNfmBvdrtt) for you to play with it
πŸ“’ [Backbone API docs](https://t.co/Yi9F8qAigO)
πŸ““ [AutoBackbone docs](https://t.co/PGo9oILHDw) (all written with love by me!πŸ’œ)""")
st.markdown(""" """)
st.markdown(""" """)
st.markdown(""" """)
col1, col2, col3 = st.columns(3)
with col1:
if st.button('Previous paper', use_container_width=True):
switch_page("OWLv2")
with col2:
if st.button('Home', use_container_width=True):
switch_page("Home")
with col3:
if st.button('Next paper', use_container_width=True):
switch_page("Depth Anything")