vision_papers / pages /0_KOSMOS-2.py
merve's picture
merve HF staff
Fix streamlit warning (#3)
595df7a verified
import streamlit as st
from streamlit_extras.switch_page_button import switch_page
translations = {
'en': {'title': 'KOSMOS-2',
'original_tweet':
"""
[Original tweet](https://x.com/mervenoyann/status/1720126908384366649) (November 2, 2023)
""",
'tweet_1':
"""
New 🤗 Transformers release includes a very powerful Multimodel Large Language Model (MLLM) by @Microsoft called KOSMOS-2! 🤩
The highlight of KOSMOS-2 is grounding, the model is *incredibly* accurate! 🌎
Play with the demo [here](https://huggingface.co/spaces/ydshieh/Kosmos-2) by [@ydshieh](https://x.com/ydshieh).
But how does this model work? Let's take a look! 👀🧶
""",
'tweet_2':
"""
Grounding helps machine learning models relate to real-world examples. Including grounding makes models more performant by means of accuracy and robustness during inference. It also helps reduce the so-called "hallucinations" in language models.
""",
'tweet_3':
"""
In KOSMOS-2, model is grounded to perform following tasks and is evaluated on 👇
- multimodal grounding & phrase grounding, e.g. localizing the object through natural language query
- multimodal referring, e.g. describing object characteristics & location
- perception-language tasks
- language understanding and generation
""",
'tweet_4':
"""
The dataset used for grounding, called GRiT is also available on [Hugging Face Hub](https://huggingface.co/datasets/zzliang/GRIT).
Thanks to 🤗 Transformers integration, you can use KOSMOS-2 with few lines of code 🤩
See below! 👇
""",
'ressources':
"""
Ressources:
[Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824)
by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei (2023)
[GitHub](https://github.com/microsoft/unilm/tree/master/kosmos-2)
[Hugging Face documentation](https://huggingface.co/docs/transformers/model_doc/kosmos-2)
"""
},
'fr': {
'title': 'KOSMOS-2',
'original_tweet':
"""
[Tweet de base](https://x.com/mervenoyann/status/1720126908384366649) (en anglais) (2 novembre 2023)
""",
'tweet_1':
"""
La nouvelle version de 🤗 Transformers inclut un très puissant <i>Multimodel Large Language Model</i> (MLLM) de @Microsoft appelé KOSMOS-2 ! 🤩
Le point fort de KOSMOS-2 est l'ancrage, le modèle est *incroyablement* précis ! 🌎
Jouez avec la démo [ici](https://huggingface.co/spaces/ydshieh/Kosmos-2) de [@ydshieh](https://x.com/ydshieh).
Mais comment fonctionne t'il ? Jetons un coup d'œil ! 👀🧶
""",
'tweet_2':
"""
L'ancrage permet aux modèles d'apprentissage automatique d'être liés à des exemples du monde réel. L'inclusion de l'ancrage rend les modèles plus performants en termes de précision et de robustesse lors de l'inférence. Cela permet également de réduire les « hallucinations » dans les modèles de langage. """,
'tweet_3':
"""
Dans KOSMOS-2, le modèle est ancré pour effectuer les tâches suivantes et est évalué sur 👇
- l'ancrage multimodal et l'ancrage de phrases, par exemple la localisation de l'objet par le biais d'une requête en langage naturel
- la référence multimodale, par exemple la description des caractéristiques et de l'emplacement de l'objet
- tâches de perception-langage
- compréhension et génération du langage
""",
'tweet_4':
"""
Le jeu de données utilisé pour l'ancrage, appelé GRiT, est également disponible sur le [Hub d'Hugging Face](https://huggingface.co/datasets/zzliang/GRIT).
Grâce à l'intégration dans 🤗 Transformers, vous pouvez utiliser KOSMOS-2 avec quelques lignes de code 🤩.
Voir ci-dessous ! 👇
""",
'ressources':
"""
Ressources :
[Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824)
de Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei (2023)
[GitHub](https://github.com/microsoft/unilm/tree/master/kosmos-2)
[Documentation d'Hugging Face](https://huggingface.co/docs/transformers/model_doc/kosmos-2)
"""
}
}
def language_selector():
languages = {'EN': '🇬🇧', 'FR': '🇫🇷'}
selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector')
return 'en' if selected_lang == 'EN' else 'fr'
left_column, right_column = st.columns([5, 1])
# Add a selector to the right column
with right_column:
lang = language_selector()
# Add a title to the left column
with left_column:
st.title(translations[lang]["title"])
st.success(translations[lang]["original_tweet"], icon="ℹ️")
st.markdown(""" """)
st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True)
st.markdown(""" """)
st.video("pages/KOSMOS-2/video_1.mp4", format="video/mp4")
st.markdown(""" """)
st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/KOSMOS-2/image_1.jpg", use_container_width=True)
st.markdown(""" """)
with st.expander ("Code"):
if lang == "en":
st.code("""
from transformers import AutoProcessor, AutoModelForVision2Seq
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to("cuda")
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
image_input = Image.open(user_image_path)
# prepend different preprompts optionally to describe images
brief_preprompt = "<grounding>An image of"
detailed_preprompt = "<grounding>Describe this image in detail:"
inputs = processor(text=text_input, images=image_input, return_tensors="pt").to("cuda")
generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
image_embeds=None,
image_embeds_position_mask=inputs["image_embeds_position_mask"],
use_cache=True,
max_new_tokens=128,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
processed_text, entities = processor.post_process_generation(generated_text)
# check out the Space for inference with bbox drawing
""")
else:
st.code("""
from transformers import AutoProcessor, AutoModelForVision2Seq
model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to("cuda")
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
image_input = Image.open(user_image_path)
# ajouter différents préprompts facultatifs pour décrire les images
brief_preprompt = "<grounding>An image of"
detailed_preprompt = "<grounding>Describe this image in detail:"
inputs = processor(text=text_input, images=image_input, return_tensors="pt").to("cuda")
generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
image_embeds=None,
image_embeds_position_mask=inputs["image_embeds_position_mask"],
use_cache=True,
max_new_tokens=128,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
processed_text, entities = processor.post_process_generation(generated_text)
# consultez le Space pour l'inférence avec le tracé des bbox
""")
st.markdown(""" """)
st.info(translations[lang]["ressources"], icon="📚")
st.markdown(""" """)
st.markdown(""" """)
st.markdown(""" """)
col1, col2, col3= st.columns(3)
with col1:
if lang == "en":
if st.button('Previous paper', use_container_width=True):
switch_page("Home")
else:
if st.button('Papier précédent', use_container_width=True):
switch_page("Home")
with col2:
if lang == "en":
if st.button("Home", use_container_width=True):
switch_page("Home")
else:
if st.button("Accueil", use_container_width=True):
switch_page("Home")
with col3:
if lang == "en":
if st.button("Next paper", use_container_width=True):
switch_page("MobileSAM")
else:
if st.button("Papier suivant", use_container_width=True):
switch_page("MobileSAM")