vision_papers / pages /10_LLaVA-NeXT.py
merve's picture
merve HF staff
Fix streamlit warning (#3)
595df7a verified
import streamlit as st
from streamlit_extras.switch_page_button import switch_page
translations = {
'en': {'title': 'LLaVA-NeXT',
'original_tweet':
"""
[Original tweet](https://twitter.com/mervenoyann/status/1770832875551682563) (March 21, 2024)
""",
'tweet_1':
"""
LLaVA-NeXT is recently merged to 🤗 Transformers and it outperforms many of the proprietary models like Gemini on various benchmarks!🤩
For those who don't know LLaVA, it's a language model that can take image 💬
Let's take a look, demo and more in this.
""",
'tweet_2':
"""
LLaVA is essentially a vision-language model that consists of ViT-based CLIP encoder, a MLP projection and Vicuna as decoder ✨
LLaVA 1.5 was released with Vicuna, but LLaVA NeXT (1.6) is released with four different LLMs:
- Nous-Hermes-Yi-34B
- Mistral-7B
- Vicuna 7B & 13B
""",
'tweet_3':
"""
Thanks to 🤗 Transformers integration, it is very easy to use LLaVA NeXT, not only standalone but also with 4-bit loading and Flash Attention 2 💜
See below on standalone usage 👇
""",
'tweet_4':
"""
To fit large models and make it even faster and memory efficient, you can enable Flash Attention 2 and load model into 4-bit using bitsandbytes ⚡️ transformers makes it very easy to do this! See below 👇
""",
'tweet_5':
"""
If you want to try the code right away, here's the [notebook](https://t.co/NvoxvY9z1u).
Lastly, you can directly play with the LLaVA-NeXT based on Mistral-7B through the demo [here](https://t.co/JTDlqMUwEh) 🤗
""",
'ressources':
"""
Ressources:
[LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/)
by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee (2024)
[GitHub](https://github.com/haotian-liu/LLaVA/tree/main)
[Hugging Face documentation](https://huggingface.co/docs/transformers/model_doc/llava_next)
"""
},
'fr': {
'title': 'LLaVA-NeXT',
'original_tweet':
"""
[Tweet de base](https://twitter.com/mervenoyann/status/1770832875551682563) (en anglais) (21 mars 2024)
""",
'tweet_1':
"""
LLaVA-NeXT a récemment été intégré à 🤗 Transformers et surpasse de nombreux modèles propriétaires comme Gemini sur différents benchmarks !🤩
Pour ceux qui ne connaissent pas LLaVA, il s'agit d'un modèle de langage qui peut prendre des images 💬.
""",
'tweet_2':
"""
LLaVA est essentiellement un modèle langage/vision qui se compose d'un encodeur CLIP basé sur ViT, d'une projection MLP et de Vicuna en tant que décodeur ✨.
LLaVA 1.5 a été publié avec Vicuna, mais LLaVA NeXT (1.6) est publié avec quatre LLM différents :
- Nous-Hermes-Yi-34B
- Mistral-7B
- Vicuna 7B & 13B
""",
'tweet_3':
"""
Grâce à l'intégration dans 🤗 Transformers, il est très facile d'utiliser LLaVA NeXT, non seulement en mode autonome mais aussi avec un chargement 4 bits et Flash Attention 2 💜.
Voir ci-dessous pour l'utilisation autonome 👇
""",
'tweet_4':
"""
Pour entraîner des grands modèles et les rendre encore plus rapides et efficaces en termes de mémoire, vous pouvez activer Flash Attention 2 et charger le modèle en 4 bits à l'aide de bitsandbytes ⚡️ ! Voir ci-dessous 👇 """,
'tweet_5':
"""
Si vous voulez essayer le code tout de suite, voici le [notebook](https://t.co/NvoxvY9z1u).
Enfin, vous pouvez directement jouer avec le LLaVA-NeXT reposant sur Mistral-7B grâce à cette [démo](https://t.co/JTDlqMUwEh) 🤗
""",
'ressources':
"""
Ressources :
[LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/)
de Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee (2024)
[GitHub](https://github.com/haotian-liu/LLaVA/tree/main)
[Documentation d'Hugging Face](https://huggingface.co/docs/transformers/model_doc/llava_next)
"""
}
}
def language_selector():
languages = {'EN': '🇬🇧', 'FR': '🇫🇷'}
selected_lang = st.selectbox('', options=list(languages.keys()), format_func=lambda x: languages[x], key='lang_selector')
return 'en' if selected_lang == 'EN' else 'fr'
left_column, right_column = st.columns([5, 1])
# Add a selector to the right column
with right_column:
lang = language_selector()
# Add a title to the left column
with left_column:
st.title(translations[lang]["title"])
st.success(translations[lang]["original_tweet"], icon="ℹ️")
st.markdown(""" """)
st.markdown(translations[lang]["tweet_1"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/LLaVA-NeXT/image_1.jpeg", use_container_width=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_2"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/LLaVA-NeXT/image_2.jpeg", use_container_width=True)
st.markdown(""" """)
st.markdown(translations[lang]["tweet_3"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/LLaVA-NeXT/image_3.jpeg", use_container_width=True)
st.markdown(""" """)
with st.expander ("Code"):
st.code("""
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda:0")
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
""")
st.markdown(""" """)
st.markdown(translations[lang]["tweet_4"], unsafe_allow_html=True)
st.markdown(""" """)
st.image("pages/LLaVA-NeXT/image_4.jpeg", use_container_width=True)
st.markdown(""" """)
with st.expander ("Code"):
st.code("""
from transformers import LlavaNextForConditionalGeneration, BitsandBytesconfig
# 4bit
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtpe="torch.float16")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto")
# Flash Attention 2
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True, use_flash_attention_2=True).to(0)
""")
st.markdown(""" """)
st.markdown(translations[lang]["tweet_5"], unsafe_allow_html=True)
st.markdown(""" """)
st.video("pages/LLaVA-NeXT//video_1.mp4", format="video/mp4")
st.markdown(""" """)
st.info(translations[lang]["ressources"], icon="📚")
st.markdown(""" """)
st.markdown(""" """)
st.markdown(""" """)
col1, col2, col3= st.columns(3)
with col1:
if lang == "en":
if st.button('Previous paper', use_container_width=True):
switch_page("UDOP")
else:
if st.button('Papier précédent', use_container_width=True):
switch_page("UDOP")
with col2:
if lang == "en":
if st.button("Home", use_container_width=True):
switch_page("Home")
else:
if st.button("Accueil", use_container_width=True):
switch_page("Home")
with col3:
if lang == "en":
if st.button("Next paper", use_container_width=True):
switch_page("Painter")
else:
if st.button("Papier suivant", use_container_width=True):
switch_page("Painter")