mery22's picture
Update app.py
9b4c572 verified
import os
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import json
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.chains import LLMChain
# Load Google service account credentials from Hugging Face secrets
GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"]
# Google Sheets API v4 setup
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope)
client = gspread.authorize(creds)
spreadsheet_id = '1Jf1k7Q71ihsxBf-XQYyucamMy14q7IjhUDlU8ZzR_Nc' # Replace with your actual spreadsheet ID
sheet = client.open_by_key(spreadsheet_id).sheet1
# Function to save user feedback to Google Sheets
def save_feedback(user_input, bot_response, rating, comment):
feedback = [user_input, bot_response, rating, comment]
sheet.append_row(feedback)
from huggingface_hub import login
login(token=st.secrets["HF_TOKEN"])
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True)
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={'k': 2}
)
prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider?
Answer in french only
{context}
Vous devez répondre aux questions en français.
### QUESTION:
{question}
[/INST]
Answer in french only
Vous devez répondre aux questions en français.
"""
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
mistral_llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=2048, temperature=0.02, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)
# Create prompt from prompt template
prompt = PromptTemplate(
input_variables=["question"],
template=prompt_template,
)
# Create llm chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
retriever.search_kwargs = {'k':4}
qa = RetrievalQA.from_chain_type(
llm=mistral_llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt},
)
import streamlit as st
# Streamlit interface with improved aesthetics
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
# Define function to handle user input and display chatbot response
def chatbot_response(user_input):
response = qa.run(user_input)
return response
# Session state to hold user input and chatbot response
if 'user_input' not in st.session_state:
st.session_state.user_input = ""
if 'bot_response' not in st.session_state:
st.session_state.bot_response = ""
# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])
with col1:
st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed
with col3:
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed
# Streamlit components
st.markdown("""
<style>
.centered-text {
text-align: center;
}
.centered-orange-text {
text-align: center;
color: darkorange;
}
</style>
""", unsafe_allow_html=True)
# Use CSS classes to style the text
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)
# Input form for user interaction
with st.form(key='interaction_form'):
st.session_state.user_input = st.text_input("You:", key="user_input_input")
ask_button = st.form_submit_button("Ask 📨") # Button to submit the question
if ask_button and st.session_state.user_input.strip():
st.session_state.bot_response = chatbot_response(st.session_state.user_input)
# Display the bot response if available
if st.session_state.bot_response:
st.markdown("### Bot:")
st.text_area("", value=st.session_state.bot_response, height=600)
# Separate form for feedback submission
with st.form(key='feedback_form'):
st.markdown("### Évaluez la réponse :")
rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1, key="rating")
st.markdown("##### Laissez un commentaire ici:")
comment = st.text_area("", key="comment")
# Separate submit button for feedback
feedback_submit_button = st.form_submit_button("Soumettre ton Feedback")
if feedback_submit_button:
if comment.strip():
save_feedback(st.session_state.user_input, st.session_state.bot_response, rating, comment)
st.success("Merci pour votre feedback!")
# Clear the session state after submission
st.session_state.user_input = ""
st.session_state.bot_response = ""
else:
st.warning("Veuillez fournir un commentaire avant de soumettre votre retour.")
st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")