File size: 5,623 Bytes
66b4965
 
 
e016664
8cb674a
e016664
66b4965
8cb674a
3607302
 
 
4a8a2ad
3607302
c4e2aeb
b5ad3db
66b4965
e016664
c4e2aeb
 
 
 
 
 
 
cf39065
 
 
 
c4e2aeb
 
 
 
 
17bdd91
c4e2aeb
 
 
 
 
 
 
 
 
 
17bdd91
c4e2aeb
 
 
 
 
 
 
 
 
8cb674a
17bdd91
8cb674a
 
 
 
 
 
 
 
 
 
17bdd91
8cb674a
 
 
 
 
 
 
 
 
18566fa
17bdd91
f53967f
 
 
 
 
 
 
 
18566fa
 
17bdd91
bf23c7b
 
 
 
 
 
 
 
17bdd91
 
 
3435c28
 
 
 
 
 
 
 
18566fa
c4e2aeb
 
 
 
66b4965
e016664
66b4965
 
c4e2aeb
66b4965
e016664
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import pandas as pd
from css_html_js import custom_css

TITLE = """<h1 align="center" id="space-title">πŸ‡²πŸ‡Ύ Malaysian RAG Embedding Leaderboard</h1>"""

INTRODUCTION_TEXT = """
πŸ“ The πŸ‡²πŸ‡Ύ Malaysian RAG Embedding Leaderboard aims to track, rank and evaluate Top-k retrieval using embedding models. All notebooks at https://github.com/mesolitica/embedding-benchmarks, feel free to submit your own score at https://huggingface.co/spaces/mesolitica/Malaysian-Embedding-Leaderboard/discussions with link to the notebook.

## Dataset

πŸ“ˆ We evaluate models based on 2 datasets,

1. Research paper keyword `melayu` using Crossref, https://huggingface.co/datasets/mesolitica/malaysian-ultrachat/resolve/main/ultrachat-crossref-melayu-malay.jsonl
2. lom.agc.gov.my PDF files, https://huggingface.co/datasets/mesolitica/malaysian-ultrachat/resolve/main/ultrachat-lom-agc.jsonl
"""

close_source = [
    {
        'model': 'OpenAI ADA-002',
        'Crossref Melayu top-1': 0.3155939351340496,
        'Crossref Melayu top-3': 0.5120996083944171,
        'Crossref Melayu top-5': 0.5878100210864544,
        'Crossref Melayu top-10': 0.6721558389396526,
        'lom.agc.gov.my top-1': 0.19168533731640527,
        'lom.agc.gov.my top-3': 0.2827981080408265,
        'lom.agc.gov.my top-5': 0.322504356484939,
        'lom.agc.gov.my top-10': 0.36855862584017923,
    }
]

open_source = [
    {
        'model': '[mesolitica/llama2-embedding-600m-8k](https://huggingface.co/mesolitica/llama2-embedding-600m-8k)',
        'Crossref Melayu top-1': 0.09549151521237072,
        'Crossref Melayu top-3': 0.1834521538307059,
        'Crossref Melayu top-5': 0.23375840947886334,
        'Crossref Melayu top-10': 0.3098704689225826,
        'lom.agc.gov.my top-1': 0.05215334826985312,
        'lom.agc.gov.my top-3': 0.09932785660941,
        'lom.agc.gov.my top-5': 0.12969878018421707,
        'lom.agc.gov.my top-10': 0.1797361214836943,
    },
    {
        'model': '[mesolitica/llama2-embedding-1b-8k](https://huggingface.co/mesolitica/llama2-embedding-1b-8k)',
        'Crossref Melayu top-1': 0.06777788934631991,
        'Crossref Melayu top-3': 0.142584596847073,
        'Crossref Melayu top-5': 0.18817150316296816,
        'Crossref Melayu top-10': 0.25715433276433375,
        'lom.agc.gov.my top-1': 0.06870799103808813,
        'lom.agc.gov.my top-3': 0.1343042071197411,
        'lom.agc.gov.my top-5': 0.1717699775952203,
        'lom.agc.gov.my top-10': 0.23089370176748816,
    },
    {
        'model': '[mesolitica/mistral-embedding-191m-8k-contrastive](https://huggingface.co/mesolitica/mistral-embedding-191m-8k-contrastive)',
        'Crossref Melayu top-1': 0.08001654088700506,
        'Crossref Melayu top-3': 0.17378269409697095,
        'Crossref Melayu top-5': 0.232192701333609,
        'Crossref Melayu top-10': 0.32482166856197664,
        'lom.agc.gov.my top-1': 0.041075429424943986,
        'lom.agc.gov.my top-3': 0.09148618371919343,
        'lom.agc.gov.my top-5': 0.12758277321384118,
        'lom.agc.gov.my top-10': 0.18707991038088126,
    },
    {
        'model': '[mesolitica/mistral-embedding-349m-8k-contrastive](https://huggingface.co/mesolitica/mistral-embedding-349m-8k-contrastive)',
        'Crossref Melayu top-1': 0.09045797580895276,
        'Crossref Melayu top-3': 0.18742892587615012,
        'Crossref Melayu top-5': 0.2444949860436266,
        'Crossref Melayu top-10': 0.3398118474103174,
        'lom.agc.gov.my top-1': 0.039581777445855115,
        'lom.agc.gov.my top-3': 0.08849887976101568,
        'lom.agc.gov.my top-5': 0.12335075927308937,
        'lom.agc.gov.my top-10': 0.18558625840179238,
    },
    {
        'model': '[mesolitica/llama2-embedding-600m-8k-contrastive](https://huggingface.co/mesolitica/llama2-embedding-600m-8k)',
        'Crossref Melayu top-1': 0.1260208828698439,
        'Crossref Melayu top-3': 0.2649643337123953,
        'Crossref Melayu top-5': 0.3535614597332782,
        'Crossref Melayu top-10': 0.4751369792205107,
        'lom.agc.gov.my top-1': 0.0660941000746826,
        'lom.agc.gov.my top-3': 0.13754045307443366,
        'lom.agc.gov.my top-5': 0.18869803335822755,
        'lom.agc.gov.my top-10': 0.2745830221558377,
    },
    {
        'model': '[mesolitica/llama2-embedding-1b-8k-contrastive](https://huggingface.co/mesolitica/llama2-embedding-1b-8k)',
        'Crossref Melayu top-1': 0.21958027499224647,
        'Crossref Melayu top-3': 0.42809883179985525,
        'Crossref Melayu top-5': 0.5379923498397602,
        'Crossref Melayu top-10': 0.6708363485991936,
        'lom.agc.gov.my top-1': 0.11899427433408016,
        'lom.agc.gov.my top-3': 0.239731142643764,
        'lom.agc.gov.my top-5': 0.3094349016679114,
        'lom.agc.gov.my top-10': 0.4134926562111028,
    },
    {
        'model': '[mesolitica/llama2-embedding-2b-8k-contrastive](https://huggingface.co/mesolitica/llama2-embedding-2b-8k)',
        'Crossref Melayu top-1': 0.2603122092422206,
        'Crossref Melayu top-3': 0.4910575829628864,
        'Crossref Melayu top-5': 0.6041558978600228,
        'Crossref Melayu top-10': 0.7295564974671767,
        'lom.agc.gov.my top-1': 0.15011202389843167,
        'lom.agc.gov.my top-3': 0.2803086880756784,
        'lom.agc.gov.my top-5': 0.35760517799352753,
        'lom.agc.gov.my top-10': 0.466268359472243,
    },
]

data = pd.DataFrame(close_source + open_source)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    gr.DataFrame(data, datatype = 'markdown')

demo.launch()