File size: 3,054 Bytes
eadf256
8aee673
eadf256
 
 
 
 
 
497c126
a976824
 
 
aef8a67
a976824
 
0bb1032
09bc438
77a9f7a
09bc438
 
 
 
3d74a39
 
09bc438
 
 
eadf256
3e2f0b7
 
 
09bc438
a976824
 
09bc438
a976824
09bc438
 
a976824
 
 
 
09bc438
a976824
09bc438
 
a976824
09bc438
 
 
 
 
 
 
 
ab2c9ad
 
eadf256
c1e74d5
 
 
09bc438
62778fc
eadf256
 
 
09bc438
3e2f0b7
 
5c4fbd0
eadf256
09bc438
 
d24fd05
09bc438
 
 
 
 
 
a976824
 
 
 
 
 
09bc438
a976824
09bc438
 
 
a976824
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import sys
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download

# Clone the repository and add the path
os.system("git clone https://github.com/google-research/frame-interpolation")
sys.path.append("frame-interpolation")

# Import after appending the path
from eval import interpolator, util

def load_model(model_name):
    model = interpolator.Interpolator(snapshot_download(repo_id=model_name), None)
    return model

model_names = [
    "akhaliq/frame-interpolation-film-style",
    "NimaBoscarino/frame-interpolation_film_l1",
    "NimaBoscarino/frame_interpolation_film_vgg",
]

models = {model_name: load_model(model_name) for model_name in model_names}

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)

def resize(width, img):
    img = Image.fromarray(img)
    wpercent = (width / float(img.size[0]))
    hsize = int((float(img.size[1]) * float(wpercent)))
    img = img.resize((width, hsize), Image.LANCZOS)
    return img

def resize_and_crop(img_path, size, crop_origin="middle"):
    img = Image.open(img_path)
    img = img.resize(size, Image.LANCZOS)
    return img

def resize_img(img1, img2_path):
    img_target_size = Image.open(img1)
    img_to_resize = resize_and_crop(
        img2_path,
        (img_target_size.size[0], img_target_size.size[1]),  # set width and height to match img1
        crop_origin="middle"
    )
    img_to_resize.save('resized_img2.png')

def predict(frame1, frame2, times_to_interpolate, model_name):
    model = models[model_name]

    frame1 = resize(1080, frame1)
    frame2 = resize(1080, frame2)

    frame1.save("test1.png")
    frame2.save("test2.png")

    resize_img("test1.png", "test2.png")
    input_frames = ["test1.png", "resized_img2.png"]

    frames = list(
        util.interpolate_recursively_from_files(
            input_frames, times_to_interpolate, model))

    mediapy.write_video("out.mp4", frames, fps=30)
    return "out.mp4"

title = "frame-interpolation"
description = "Gradio demo for FILM: Frame Interpolation for Large Scene Motion. To use it, simply upload your images and add the times to interpolate number or click on one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://film-net.github.io/' target='_blank'>FILM: Frame Interpolation for Large Motion</a> | <a href='https://github.com/google-research/frame-interpolation' target='_blank'>Github Repo</a></p>"
examples = [
    ['cat3.jpeg', 'cat4.jpeg', 2, model_names[0]],
    ['cat1.jpeg', 'cat2.jpeg', 2, model_names[1]],
]

gr.Interface(
    fn=predict,
    inputs=[
        gr.Image(label="First Frame"),
        gr.Image(label="Second Frame"),
        gr.Number(label="Times to Interpolate", value=2),
        gr.Dropdown(label="Model", choices=model_names),
    ],
    outputs=gr.Video(label="Interpolated Frames"),
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()