Spaces:
Running
Running
File size: 2,563 Bytes
609bf1e d9b1d5d 609bf1e 3989d63 609bf1e 3989d63 6001755 609bf1e 3989d63 609bf1e bb75ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
import json
import numpy as np
import faiss
# Init similarity search AI model and processor
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dino_v2_model = AutoModel.from_pretrained("./dinov2-base").to(torch_device)
dino_v2_image_processor = AutoImageProcessor.from_pretrained("./dinov2-base")
def process_image(image):
"""
Process the image and extract features using the DINOv2 model.
"""
# Add your image processing code here.
# This will include preprocessing the image, passing it through the model,
# and then formatting the output (extracted features).
# Load the index
with open("images.json", "r") as f:
images = json.load(f)
# Convert to RGB if it isn't already
if image.mode != "RGB":
image = image.convert("RGB")
# Resize to 64px while maintaining aspect ratio
width, height = image.size
if width < height:
w_percent = 64 / float(width)
new_width = 64
new_height = int(float(height) * float(w_percent))
else:
h_percent = 64 / float(height)
new_height = 64
new_width = int(float(width) * float(h_percent))
image = image.resize((new_width, new_height), Image.LANCZOS)
# Extract the features from the uploaded image
with torch.no_grad():
inputs = dino_v2_image_processor(images=image, return_tensors="pt").to(
torch_device
)
outputs = dino_v2_model(**inputs)
# Normalize the features before search, whatever that means
embeddings = outputs.last_hidden_state
embeddings = embeddings.mean(dim=1)
vector = embeddings.detach().cpu().numpy()
vector = np.float32(vector)
faiss.normalize_L2(vector)
# Read the index file and perform search of top 50 images
index = faiss.read_index("vector.index")
distances, indices = index.search(vector, 50)
matches = []
for idx, matching_gamerpic in enumerate(indices[0]):
gamerpic = {}
gamerpic["cdn"] = images[matching_gamerpic]
gamerpic["score"] = str(round((1 / (distances[0][idx] + 1) * 100), 2)) + "%"
print(gamerpic)
matches.append(gamerpic)
return matches
# Create a Gradio interface
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"), # Adjust the shape as needed
outputs="json", # Or any other output format that suits your needs
)
# Launch the Gradio app
iface.launch()
|