Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoImageProcessor, AutoModel | |
import torch | |
from PIL import Image | |
import json | |
import numpy as np | |
import faiss | |
# Init similarity search AI model and processor | |
device = torch.device("cpu") | |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-large") | |
model = AutoModel.from_pretrained("facebook/dinov2-large") | |
model.config.return_dict = False # Set return_dict to False for JIT tracing | |
model.to(device) | |
# Prepare an example input for tracing | |
example_input = torch.rand(1, 3, 224, 224).to(device) # Adjust size if needed | |
traced_model = torch.jit.trace(model, example_input) | |
traced_model = traced_model.to(device) | |
# Load faiss index | |
index = faiss.read_index("xbgp-faiss.index") | |
# Load faiss map | |
with open("xbgp-faiss-map.json", "r") as f: | |
images = json.load(f) | |
def process_image(image): | |
""" | |
Process the image and extract features using the DINOv2 model. | |
""" | |
# Add your image processing code here. | |
# This will include preprocessing the image, passing it through the model, | |
# and then formatting the output (extracted features). | |
# Convert to RGB if it isn't already | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Resize to 224px while maintaining aspect ratio | |
width, height = image.size | |
if width < height: | |
w_percent = 224 / float(width) | |
new_width = 224 | |
new_height = int(float(height) * float(w_percent)) | |
else: | |
h_percent = 224 / float(height) | |
new_height = 224 | |
new_width = int(float(width) * float(h_percent)) | |
image = image.resize((new_width, new_height), Image.LANCZOS) | |
# Extract the features from the uploaded image | |
with torch.no_grad(): | |
inputs = processor(images=image, return_tensors="pt")["pixel_values"].to(device) | |
# Use the traced model for inference | |
outputs = traced_model(inputs) | |
# Normalize the features before search, whatever that means | |
embeddings = outputs[0].mean(dim=1) | |
vector = embeddings.detach().cpu().numpy() | |
vector = np.float32(vector) | |
faiss.normalize_L2(vector) | |
# Read the index file and perform search of top 50 images | |
distances, indices = index.search(vector, 50) | |
matches = [] | |
for idx, matching_gamerpic in enumerate(indices[0]): | |
gamerpic = {} | |
gamerpic["id"] = images[matching_gamerpic] | |
gamerpic["score"] = str(round((1 / (distances[0][idx] + 1) * 100), 2)) + "%" | |
matches.append(gamerpic) | |
return matches | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil"), # Adjust the shape as needed | |
outputs="json", # Or any other output format that suits your needs | |
).queue() | |
# Launch the Gradio app | |
iface.launch() | |