import gradio as gr from transformers import AutoImageProcessor, AutoModel import torch from PIL import Image import json import numpy as np import faiss # Init similarity search AI model and processor torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dino_v2_model = AutoModel.from_pretrained("./dinov2-base").to(torch_device) dino_v2_image_processor = AutoImageProcessor.from_pretrained("./dinov2-base") def process_image(image): """ Process the image and extract features using the DINOv2 model. """ # Add your image processing code here. # This will include preprocessing the image, passing it through the model, # and then formatting the output (extracted features). # Load the index with open("xbgp-faiss-map.json", "r") as f: images = json.load(f) # Convert to RGB if it isn't already if image.mode != "RGB": image = image.convert("RGB") # Resize to 64px while maintaining aspect ratio width, height = image.size if width < height: w_percent = 64 / float(width) new_width = 64 new_height = int(float(height) * float(w_percent)) else: h_percent = 64 / float(height) new_height = 64 new_width = int(float(width) * float(h_percent)) image = image.resize((new_width, new_height), Image.LANCZOS) # Extract the features from the uploaded image with torch.no_grad(): inputs = dino_v2_image_processor(images=image, return_tensors="pt").to( torch_device ) outputs = dino_v2_model(**inputs) # Normalize the features before search, whatever that means embeddings = outputs.last_hidden_state embeddings = embeddings.mean(dim=1) vector = embeddings.detach().cpu().numpy() vector = np.float32(vector) faiss.normalize_L2(vector) # Read the index file and perform search of top 50 images index = faiss.read_index("xbgp-faiss.index") distances, indices = index.search(vector, 50) matches = [] for idx, matching_gamerpic in enumerate(indices[0]): gamerpic = {} gamerpic["id"] = images[matching_gamerpic] gamerpic["score"] = str(round((1 / (distances[0][idx] + 1) * 100), 2)) + "%" print(gamerpic) matches.append(gamerpic) return matches # Create a Gradio interface iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), # Adjust the shape as needed outputs="json", # Or any other output format that suits your needs ).queue() # Launch the Gradio app iface.launch()