File size: 2,118 Bytes
fc5ed00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import List, Optional, Union

from numpy import ndarray

class DF:
    def __init__(

        self,

        sr: int,

        fft_size: int,

        hop_size: int,

        nb_bands: int,

        min_nb_erb_freqs: Optional[int] = 1,

    ):
        """DeepFilter state used for analysis and synthesis.



        Args:

            sr (int): Sampling rate.

            fft_size (int): Window length used for the Fast Fourier transform.

            hop_size (int): Hop size between two analysis windows. Also called frame size.

            nb_bands (int): Number of ERB bands.

            min_nb_erb_freqs (int): Minimum number of frequency bands per ERB band. Defaults to 1.

        """
        ...
    def analysis(self, input: ndarray) -> ndarray:
        """Analysis of a time-domain signal.



        Args:

            input (ndarray): 2D real-valued array of shape [C, T].

        Output:

            output (ndarray): 3D complex-valued array of shape [C, T', F], where F is the `fft_size`,

                and T' the original time T divided by `hop_size`.

        """
        ...
    def synthesis(self, input: ndarray) -> ndarray:
        """Synthesis of a frequency-domain signal.



        Args:

            input (ndarray): 3D complex-valued array of shape [C, T, F].

        Output:

            output (ndarray): 2D real-valued array of shape [C, T].

        """
        ...
    def erb_widths(self) -> ndarray: ...
    def fft_window(self) -> ndarray: ...
    def sr(self) -> int: ...
    def fft_size(self) -> int: ...
    def hop_size(self) -> int: ...
    def nb_erb(self) -> int: ...
    def reset(self) -> None: ...

def erb(

    input: ndarray, erb_fb: Union[ndarray, List[int]], db: Optional[bool] = None

) -> ndarray: ...
def erb_inv(input: ndarray, erb_fb: Union[ndarray, List[int]]) -> ndarray: ...
def erb_norm(erb: ndarray, alpha: float, state: Optional[ndarray] = None) -> ndarray: ...
def unit_norm(spec: ndarray, alpha: float, state: Optional[ndarray] = None) -> ndarray: ...
def unit_norm_init(num_freq_bins: int) -> ndarray: ...