Spaces:
Running
Running
File size: 12,879 Bytes
fc5ed00 35916c5 fc5ed00 74258c0 fc5ed00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# load the libraries for the application
# -------------------------------------------
import os
import re
import nltk
import torch
import librosa
import tempfile
import subprocess
import gradio as gr
from scipy.io import wavfile
from nnet import utils, commons
from transformers import pipeline
from scipy.io.wavfile import write
from faster_whisper import WhisperModel
from nnet.models import SynthesizerTrn as vitsTRN
from nnet.models_vc import SynthesizerTrn as freeTRN
from nnet.mel_processing import mel_spectrogram_torch
from configurations.get_constants import constantConfig
from speaker_encoder.voice_encoder import SpeakerEncoder
from df_local.enhance import enhance, init_df, load_audio, save_audio
from configurations.get_hyperparameters import hyperparameterConfig
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
# making the FreeVC function
# ---------------------------------
class FreeVCModel:
def __init__(self, config, ptfile, speaker_model, wavLM_model, device='cpu'):
self.hps = utils.get_hparams_from_file(config)
self.net_g = freeTRN(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
**self.hps.model
).to(hyperparameters.device)
_ = self.net_g.eval()
_ = utils.load_checkpoint(ptfile, self.net_g, None, True)
self.cmodel = utils.get_cmodel(device, wavLM_model)
if self.hps.model.use_spk:
self.smodel = SpeakerEncoder(speaker_model)
def convert(self, src, tgt):
fs_src, src_audio = src
fs_tgt, tgt_audio = tgt
src = f"{constants.temp_audio_folder}/src.wav"
tgt = f"{constants.temp_audio_folder}/tgt.wav"
out = f"{constants.temp_audio_folder}/cnvr.wav"
with torch.no_grad():
wavfile.write(tgt, fs_tgt, tgt_audio)
wav_tgt, _ = librosa.load(tgt, sr=self.hps.data.sampling_rate)
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
if self.hps.model.use_spk:
g_tgt = self.smodel.embed_utterance(wav_tgt)
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(hyperparameters.device.type)
else:
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(hyperparameters.device.type)
mel_tgt = mel_spectrogram_torch(
wav_tgt,
self.hps.data.filter_length,
self.hps.data.n_mel_channels,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
self.hps.data.mel_fmin,
self.hps.data.mel_fmax,
)
wavfile.write(src, fs_src, src_audio)
wav_src, _ = librosa.load(src, sr=self.hps.data.sampling_rate)
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(hyperparameters.device.type)
c = utils.get_content(self.cmodel, wav_src)
if self.hps.model.use_spk:
audio = self.net_g.infer(c, g=g_tgt)
else:
audio = self.net_g.infer(c, mel=mel_tgt)
audio = audio[0][0].data.cpu().float().numpy()
write(out, 24000, audio)
return out
# load the system configurations
constants = constantConfig()
hyperparameters = hyperparameterConfig()
# load the models
model, df_state, _ = init_df(hyperparameters.voice_enhacing_model, config_allow_defaults=True) # voice enhancing model
stt_model = WhisperModel(hyperparameters.stt_model, device=hyperparameters.device.type, compute_type="float32") #speech to text model
trans_model = AutoModelForSeq2SeqLM.from_pretrained(constants.model_name_dict[hyperparameters.nllb_model], torch_dtype=torch.bfloat16).to(hyperparameters.device)
trans_tokenizer = AutoTokenizer.from_pretrained(constants.model_name_dict[hyperparameters.nllb_model])
modelConvertSpeech = FreeVCModel(config=hyperparameters.text2speech_config, ptfile=hyperparameters.text2speech_model,
speaker_model=hyperparameters.text2speech_encoder, wavLM_model=hyperparameters.wavlm_model,
device=hyperparameters.device.type)
# download the language model if doesn't existing
# ----------------------------------------------------
def download(lang, lang_directory):
if not os.path.exists(f"{lang_directory}/{lang}"):
cmd = ";".join([
f"wget {constants.language_download_web}/{lang}.tar.gz -O {lang_directory}/{lang}.tar.gz",
f"tar zxvf {lang_directory}/{lang}.tar.gz -C {lang_directory}"
])
subprocess.check_output(cmd, shell=True)
try:
os.remove(f"{lang_directory}/{lang}.tar.gz")
except:
pass
return f"{lang_directory}/{lang}"
def preprocess_char(text, lang=None):
"""
Special treatement of characters in certain languages
"""
if lang == 'ron':
text = text.replace("ț", "ţ")
return text
def preprocess_text(txt, text_mapper, hps, uroman_dir=None, lang=None):
txt = preprocess_char(txt, lang=lang)
is_uroman = hps.data.training_files.split('.')[-1] == 'uroman'
if is_uroman:
txt = text_mapper.uromanize(txt, f'{uroman_dir}/bin/uroman.pl')
txt = txt.lower()
txt = text_mapper.filter_oov(txt)
return txt
def detect_language(text,LID):
predictions = LID.predict(text)
detected_lang_code = predictions[0][0].replace("__label__", "")
return detected_lang_code
# text to speech
class TextMapper(object):
def __init__(self, vocab_file):
self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()]
self.SPACE_ID = self.symbols.index(" ")
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
clean_text = text.strip()
for symbol in clean_text:
symbol_id = self._symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def uromanize(self, text, uroman_pl):
with tempfile.NamedTemporaryFile() as tf, \
tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join([text]))
cmd = f"perl " + uroman_pl
cmd += f" -l xxx "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
outtexts = []
with open(tf2.name) as f:
for line in f:
line = re.sub(r"\s+", " ", line).strip()
outtexts.append(line)
outtext = outtexts[0]
return outtext
def get_text(self, text, hps):
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def filter_oov(self, text):
val_chars = self._symbol_to_id
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
return txt_filt
def speech_to_text(audio_file):
try:
fs, audio = audio_file
wavfile.write(constants.input_speech_file, fs, audio)
audio0, _ = load_audio(constants.input_speech_file, sr=df_state.sr())
# Enhance the SNR of the audio
enhanced = enhance(model, df_state, audio0)
save_audio(constants.enhanced_speech_file, enhanced, df_state.sr())
segments, info = stt_model.transcribe(constants.enhanced_speech_file)
speech_text = ''
for segment in segments:
speech_text = f'{speech_text}{segment.text}'
try:
source_lang_nllb = [k for k, v in constants.flores_codes_to_tts_codes.items() if v[:2] == info.language][0]
except:
source_lang_nllb = 'language cant be determined, select manually'
# text translation
return speech_text, gr.Dropdown.update(value=source_lang_nllb)
except:
return '', gr.Dropdown.update(value='English')
# Text tp speech
def text_to_speech(text, target_lang):
txt = text
# LANG = get_target_tts_lang(target_lang)
LANG = constants.flores_codes_to_tts_codes[target_lang]
ckpt_dir = download(LANG, lang_directory=constants.language_directory)
vocab_file = f"{ckpt_dir}/{constants.language_vocab_text}"
config_file = f"{ckpt_dir}/{constants.language_vocab_configuration}"
hps = utils.get_hparams_from_file(config_file)
text_mapper = TextMapper(vocab_file)
net_g = vitsTRN(
len(text_mapper.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
net_g.to(hyperparameters.device)
_ = net_g.eval()
g_pth = f"{ckpt_dir}/{constants.language_vocab_model}"
_ = utils.load_checkpoint(g_pth, net_g, None)
txt = preprocess_text(txt, text_mapper, hps, lang=LANG, uroman_dir=constants.uroman_directory)
stn_tst = text_mapper.get_text(txt, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(hyperparameters.device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(hyperparameters.device)
hyp = net_g.infer(
x_tst, x_tst_lengths, noise_scale=.667,
noise_scale_w=0.8, length_scale=1.0
)[0][0,0].cpu().float().numpy()
return hps.data.sampling_rate, hyp
def translation(audio, text, source_lang_nllb, target_code_nllb, output_type, sentence_mode):
target_code = constants.flores_codes[target_code_nllb]
translator = pipeline('translation', model=trans_model, tokenizer=trans_tokenizer, src_lang=source_lang_nllb, tgt_lang=target_code, device=hyperparameters.device)
# output = translator(text, max_length=400)[0]['translation_text']
if sentence_mode == "Sentence-wise":
sentences = sent_tokenize(text)
translated_sentences = []
for sentence in sentences:
translated_sentence = translator(sentence, max_length=400)[0]['translation_text']
translated_sentences.append(translated_sentence)
output = ' '.join(translated_sentences)
else:
output = translator(text, max_length=1024)[0]['translation_text']
# get the text to speech
fs_out, audio_out = text_to_speech(output, target_code_nllb)
if output_type == 'own voice':
out_file = modelConvertSpeech.convert((fs_out, audio_out), audio)
return output, out_file
wavfile.write(constants.text2speech_wavfile, fs_out, audio_out)
return output, constants.text2speech_wavfile
with gr.Blocks(title = "Octopus Translation App") as octopus_translator:
with gr.Row():
audio_file = gr.Audio(source="microphone")
with gr.Row():
input_text = gr.Textbox(label="Input text")
source_language = gr.Dropdown(list(constants.flores_codes.keys()), value='English', label='Source (Autoselected)', interactive=True)
with gr.Row():
output_text = gr.Textbox(label='Translated text')
target_language = gr.Dropdown(list(constants.flores_codes.keys()), value='German', label='Target', interactive=True)
with gr.Row():
output_speech = gr.Audio(label='Translated speech')
translate_button = gr.Button('Translate')
with gr.Row():
enhance_audio = gr.Radio(['yes', 'no'], value='yes', label='Enhance input voice', interactive=True)
input_type = gr.Radio(['Whole text', 'Sentence-wise'],value='Sentence-wise', label="Translation Mode", interactive=True)
output_audio_type = gr.Radio(['standard speaker', 'voice transfer'], value='voice transfer', label='Enhance output voice', interactive=True)
audio_file.change(speech_to_text,
inputs=[audio_file],
outputs=[input_text, source_language])
translate_button.click(translation,
inputs=[audio_file, input_text,
source_language, target_language,
output_audio_type, input_type],
outputs=[output_text, output_speech])
octopus_translator.launch(share=False)
|