Spaces:
Running
Running
File size: 11,321 Bytes
fc5ed00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import string
from configparser import ConfigParser
from shlex import shlex
from typing import Any, List, Optional, Tuple, Type, TypeVar, Union
from loguru import logger
T = TypeVar("T")
class DfParams:
def __init__(self):
# Sampling rate used for training
self.sr: int = config("SR", cast=int, default=48_000, section="DF")
# FFT size in samples
self.fft_size: int = config("FFT_SIZE", cast=int, default=960, section="DF")
# STFT Hop size in samples
self.hop_size: int = config("HOP_SIZE", cast=int, default=480, section="DF")
# Number of ERB bands
self.nb_erb: int = config("NB_ERB", cast=int, default=32, section="DF")
# Number of deep filtering bins; DF is applied from 0th to nb_df-th frequency bins
self.nb_df: int = config("NB_DF", cast=int, default=96, section="DF")
# Normalization decay factor; used for complex and erb features
self.norm_tau: float = config("NORM_TAU", 1, float, section="DF")
# Local SNR minimum value, ground truth will be truncated
self.lsnr_max: int = config("LSNR_MAX", 35, int, section="DF")
# Local SNR maximum value, ground truth will be truncated
self.lsnr_min: int = config("LSNR_MIN", -15, int, section="DF")
# Minimum number of frequency bins per ERB band
self.min_nb_freqs = config("MIN_NB_ERB_FREQS", 2, int, section="DF")
# Deep Filtering order
self.df_order: int = config("DF_ORDER", cast=int, default=5, section="DF")
# Deep Filtering look-ahead
self.df_lookahead: int = config("DF_LOOKAHEAD", cast=int, default=0, section="DF")
# Pad mode. By default, padding will be handled on the input side:
# - `input`, which pads the input features passed to the model
# - `output`, which pads the output spectrogram corresponding to `df_lookahead`
self.pad_mode: str = config("PAD_MODE", default="input_specf", section="DF")
class Config:
"""Adopted from python-decouple"""
DEFAULT_SECTION = "settings"
def __init__(self):
self.parser: ConfigParser = None # type: ignore
self.path = ""
self.modified = False
self.allow_defaults = True
def load(
self, path: Optional[str], config_must_exist=False, allow_defaults=True, allow_reload=False
):
self.allow_defaults = allow_defaults
if self.parser is not None and not allow_reload:
raise ValueError("Config already loaded")
self.parser = ConfigParser()
self.path = path
if path is not None and os.path.isfile(path):
with open(path) as f:
self.parser.read_file(f)
else:
if config_must_exist:
raise ValueError(f"No config file found at '{path}'.")
if not self.parser.has_section(self.DEFAULT_SECTION):
self.parser.add_section(self.DEFAULT_SECTION)
self._fix_clc()
self._fix_df()
def use_defaults(self):
self.load(path=None, config_must_exist=False)
def save(self, path: str):
if not self.modified:
logger.debug("Config not modified. No need to overwrite on disk.")
return
if self.parser is None:
self.parser = ConfigParser()
for section in self.parser.sections():
if len(self.parser[section]) == 0:
self.parser.remove_section(section)
with open(path, mode="w") as f:
self.parser.write(f)
def tostr(self, value, cast):
if isinstance(cast, Csv) and isinstance(value, (tuple, list)):
return "".join(str(v) + cast.delimiter for v in value)[:-1]
return str(value)
def set(self, option: str, value: T, cast: Type[T], section: Optional[str] = None) -> T:
section = self.DEFAULT_SECTION if section is None else section
section = section.lower()
if not self.parser.has_section(section):
self.parser.add_section(section)
if self.parser.has_option(section, option):
if value == self.cast(self.parser.get(section, option), cast):
return value
self.modified = True
self.parser.set(section, option, self.tostr(value, cast))
return value
def __call__(
self,
option: str,
default: Any = None,
cast: Type[T] = str,
save: bool = True,
section: Optional[str] = None,
) -> T:
# Get value either from an ENV or from the .ini file
section = self.DEFAULT_SECTION if section is None else section
value = None
if self.parser is None:
raise ValueError("No configuration loaded")
if not self.parser.has_section(section.lower()):
self.parser.add_section(section.lower())
if option in os.environ:
value = os.environ[option]
if save:
self.parser.set(section, option, self.tostr(value, cast))
elif self.parser.has_option(section, option):
value = self.read_from_section(section, option, default, cast=cast, save=save)
elif self.parser.has_option(section.lower(), option):
value = self.read_from_section(section.lower(), option, default, cast=cast, save=save)
elif self.parser.has_option(self.DEFAULT_SECTION, option):
logger.warning(
f"Couldn't find option {option} in section {section}. "
"Falling back to default settings section."
)
value = self.read_from_section(self.DEFAULT_SECTION, option, cast=cast, save=save)
elif default is None:
raise ValueError("Value {} not found.".format(option))
elif not self.allow_defaults and save:
raise ValueError(f"Value '{option}' not found in config (defaults not allowed).")
else:
value = default
if save:
self.set(option, value, cast, section)
return self.cast(value, cast)
def cast(self, value, cast):
# Do the casting to get the correct type
if cast is bool:
value = str(value).lower()
if value in {"true", "yes", "y", "on", "1"}:
return True # type: ignore
elif value in {"false", "no", "n", "off", "0"}:
return False # type: ignore
raise ValueError("Parse error")
return cast(value)
def get(self, option: str, cast: Type[T] = str, section: Optional[str] = None) -> T:
section = self.DEFAULT_SECTION if section is None else section
if not self.parser.has_section(section):
raise KeyError(section)
if not self.parser.has_option(section, option):
raise KeyError(option)
return self.cast(self.parser.get(section, option), cast)
def read_from_section(
self, section: str, option: str, default: Any = None, cast: Type = str, save: bool = True
) -> str:
value = self.parser.get(section, option)
if not save:
# Set to default or remove to not read it at trainig start again
if default is None:
self.parser.remove_option(section, option)
elif not self.allow_defaults:
raise ValueError(f"Value '{option}' not found in config (defaults not allowed).")
else:
self.parser.set(section, option, self.tostr(default, cast))
elif section.lower() != section:
self.parser.set(section.lower(), option, self.tostr(value, cast))
self.parser.remove_option(section, option)
self.modified = True
return value
def overwrite(self, section: str, option: str, value: Any):
if not self.parser.has_section(section):
return ValueError(f"Section not found: '{section}'")
if not self.parser.has_option(section, option):
return ValueError(f"Option not found '{option}' in section '{section}'")
self.modified = True
cast = type(value)
return self.parser.set(section, option, self.tostr(value, cast))
def _fix_df(self):
"""Renaming of some groups/options for compatibility with old models."""
if self.parser.has_section("deepfilternet") and self.parser.has_section("df"):
sec_deepfilternet = self.parser["deepfilternet"]
sec_df = self.parser["df"]
if "df_order" in sec_deepfilternet:
sec_df["df_order"] = sec_deepfilternet["df_order"]
del sec_deepfilternet["df_order"]
if "df_lookahead" in sec_deepfilternet:
sec_df["df_lookahead"] = sec_deepfilternet["df_lookahead"]
del sec_deepfilternet["df_lookahead"]
def _fix_clc(self):
"""Renaming of some groups/options for compatibility with old models."""
if (
not self.parser.has_section("deepfilternet")
and self.parser.has_section("train")
and self.parser.get("train", "model") == "convgru5"
):
self.overwrite("train", "model", "deepfilternet")
self.parser.add_section("deepfilternet")
self.parser["deepfilternet"] = self.parser["convgru"]
del self.parser["convgru"]
if not self.parser.has_section("df") and self.parser.has_section("clc"):
self.parser["df"] = self.parser["clc"]
del self.parser["clc"]
for section in self.parser.sections():
for k, v in self.parser[section].items():
if "clc" in k.lower():
self.parser.set(section, k.lower().replace("clc", "df"), v)
del self.parser[section][k]
def __repr__(self):
msg = ""
for section in self.parser.sections():
msg += f"{section}:\n"
for k, v in self.parser[section].items():
msg += f" {k}: {v}\n"
return msg
config = Config()
class Csv(object):
"""
Produces a csv parser that return a list of transformed elements. From python-decouple.
"""
def __init__(
self, cast: Type[T] = str, delimiter=",", strip=string.whitespace, post_process=list
):
"""
Parameters:
cast -- callable that transforms the item just before it's added to the list.
delimiter -- string of delimiters chars passed to shlex.
strip -- string of non-relevant characters to be passed to str.strip after the split.
post_process -- callable to post process all casted values. Default is `list`.
"""
self.cast: Type[T] = cast
self.delimiter = delimiter
self.strip = strip
self.post_process = post_process
def __call__(self, value: Union[str, Tuple[T], List[T]]) -> List[T]:
"""The actual transformation"""
if isinstance(value, (tuple, list)):
# if default value is a list
value = "".join(str(v) + self.delimiter for v in value)[:-1]
def transform(s):
return self.cast(s.strip(self.strip))
splitter = shlex(value, posix=True)
splitter.whitespace = self.delimiter
splitter.whitespace_split = True
return self.post_process(transform(s) for s in splitter)
|