Spaces:
Running
Running
File size: 17,810 Bytes
fc5ed00 35916c5 fc5ed00 35916c5 fc5ed00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
from functools import partial
from typing import Final, List, Optional, Tuple, Union
import torch
from loguru import logger
from torch import Tensor, nn
from df_local.config import Csv, DfParams, config
from df_local.modules import (
Conv2dNormAct,
ConvTranspose2dNormAct,
DfOp,
GroupedGRU,
GroupedLinear,
GroupedLinearEinsum,
Mask,
SqueezedGRU,
erb_fb,
get_device,
)
from df_local.multiframe import MF_METHODS, MultiFrameModule
from libdf import DF
class ModelParams(DfParams):
section = "deepfilternet"
def __init__(self):
super().__init__()
self.conv_lookahead: int = config(
"CONV_LOOKAHEAD", cast=int, default=0, section=self.section
)
self.conv_ch: int = config("CONV_CH", cast=int, default=16, section=self.section)
self.conv_depthwise: bool = config(
"CONV_DEPTHWISE", cast=bool, default=True, section=self.section
)
self.convt_depthwise: bool = config(
"CONVT_DEPTHWISE", cast=bool, default=True, section=self.section
)
self.conv_kernel: List[int] = config(
"CONV_KERNEL", cast=Csv(int), default=(1, 3), section=self.section # type: ignore
)
self.conv_kernel_inp: List[int] = config(
"CONV_KERNEL_INP", cast=Csv(int), default=(3, 3), section=self.section # type: ignore
)
self.emb_hidden_dim: int = config(
"EMB_HIDDEN_DIM", cast=int, default=256, section=self.section
)
self.emb_num_layers: int = config(
"EMB_NUM_LAYERS", cast=int, default=2, section=self.section
)
self.df_hidden_dim: int = config(
"DF_HIDDEN_DIM", cast=int, default=256, section=self.section
)
self.df_gru_skip: str = config("DF_GRU_SKIP", default="none", section=self.section)
self.df_output_layer: str = config(
"DF_OUTPUT_LAYER", default="linear", section=self.section
)
self.df_pathway_kernel_size_t: int = config(
"DF_PATHWAY_KERNEL_SIZE_T", cast=int, default=1, section=self.section
)
self.enc_concat: bool = config("ENC_CONCAT", cast=bool, default=False, section=self.section)
self.df_num_layers: int = config("DF_NUM_LAYERS", cast=int, default=3, section=self.section)
self.df_n_iter: int = config("DF_N_ITER", cast=int, default=2, section=self.section)
self.gru_type: str = config("GRU_TYPE", default="grouped", section=self.section)
self.gru_groups: int = config("GRU_GROUPS", cast=int, default=1, section=self.section)
self.lin_groups: int = config("LINEAR_GROUPS", cast=int, default=1, section=self.section)
self.group_shuffle: bool = config(
"GROUP_SHUFFLE", cast=bool, default=True, section=self.section
)
self.dfop_method: str = config("DFOP_METHOD", cast=str, default="df", section=self.section)
self.mask_pf: bool = config("MASK_PF", cast=bool, default=False, section=self.section)
def init_model(df_state: Optional[DF] = None, run_df: bool = True, train_mask: bool = True):
p = ModelParams()
if df_state is None:
df_state = DF(sr=p.sr, fft_size=p.fft_size, hop_size=p.hop_size, nb_bands=p.nb_erb)
erb = erb_fb(df_state.erb_widths(), p.sr, inverse=False)
erb_inverse = erb_fb(df_state.erb_widths(), p.sr, inverse=True)
model = DfNet(erb, erb_inverse, run_df, train_mask)
return model.to(device=get_device())
class Add(nn.Module):
def forward(self, a, b):
return a + b
class Concat(nn.Module):
def forward(self, a, b):
return torch.cat((a, b), dim=-1)
class Encoder(nn.Module):
def __init__(self):
super().__init__()
p = ModelParams()
assert p.nb_erb % 4 == 0, "erb_bins should be divisible by 4"
self.erb_conv0 = Conv2dNormAct(
1, p.conv_ch, kernel_size=p.conv_kernel_inp, bias=False, separable=True
)
conv_layer = partial(
Conv2dNormAct,
in_ch=p.conv_ch,
out_ch=p.conv_ch,
kernel_size=p.conv_kernel,
bias=False,
separable=True,
)
self.erb_conv1 = conv_layer(fstride=2)
self.erb_conv2 = conv_layer(fstride=2)
self.erb_conv3 = conv_layer(fstride=1)
self.df_conv0 = Conv2dNormAct(
2, p.conv_ch, kernel_size=p.conv_kernel_inp, bias=False, separable=True
)
self.df_conv1 = conv_layer(fstride=2)
self.erb_bins = p.nb_erb
self.emb_in_dim = p.conv_ch * p.nb_erb // 4
self.emb_out_dim = p.emb_hidden_dim
if p.gru_type == "grouped":
self.df_fc_emb = GroupedLinear(
p.conv_ch * p.nb_df // 2, self.emb_in_dim, groups=p.lin_groups
)
else:
df_fc_emb = GroupedLinearEinsum(
p.conv_ch * p.nb_df // 2, self.emb_in_dim, groups=p.lin_groups
)
self.df_fc_emb = nn.Sequential(df_fc_emb, nn.ReLU(inplace=True))
if p.enc_concat:
self.emb_in_dim *= 2
self.combine = Concat()
else:
self.combine = Add()
self.emb_out_dim = p.emb_hidden_dim
self.emb_n_layers = p.emb_num_layers
assert p.gru_type in ("grouped", "squeeze"), f"But got {p.gru_type}"
if p.gru_type == "grouped":
self.emb_gru = GroupedGRU(
self.emb_in_dim,
self.emb_out_dim,
num_layers=1,
batch_first=True,
groups=p.gru_groups,
shuffle=p.group_shuffle,
add_outputs=True,
)
else:
self.emb_gru = SqueezedGRU(
self.emb_in_dim,
self.emb_out_dim,
num_layers=1,
batch_first=True,
linear_groups=p.lin_groups,
linear_act_layer=partial(nn.ReLU, inplace=True),
)
self.lsnr_fc = nn.Sequential(nn.Linear(self.emb_out_dim, 1), nn.Sigmoid())
self.lsnr_scale = p.lsnr_max - p.lsnr_min
self.lsnr_offset = p.lsnr_min
def forward(
self, feat_erb: Tensor, feat_spec: Tensor
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
# Encodes erb; erb should be in dB scale + normalized; Fe are number of erb bands.
# erb: [B, 1, T, Fe]
# spec: [B, 2, T, Fc]
# b, _, t, _ = feat_erb.shape
e0 = self.erb_conv0(feat_erb) # [B, C, T, F]
e1 = self.erb_conv1(e0) # [B, C*2, T, F/2]
e2 = self.erb_conv2(e1) # [B, C*4, T, F/4]
e3 = self.erb_conv3(e2) # [B, C*4, T, F/4]
c0 = self.df_conv0(feat_spec) # [B, C, T, Fc]
c1 = self.df_conv1(c0) # [B, C*2, T, Fc]
cemb = c1.permute(0, 2, 3, 1).flatten(2) # [B, T, -1]
cemb = self.df_fc_emb(cemb) # [T, B, C * F/4]
emb = e3.permute(0, 2, 3, 1).flatten(2) # [B, T, C * F/4]
emb = self.combine(emb, cemb)
emb, _ = self.emb_gru(emb) # [B, T, -1]
lsnr = self.lsnr_fc(emb) * self.lsnr_scale + self.lsnr_offset
return e0, e1, e2, e3, emb, c0, lsnr
class ErbDecoder(nn.Module):
def __init__(self):
super().__init__()
p = ModelParams()
assert p.nb_erb % 8 == 0, "erb_bins should be divisible by 8"
self.emb_out_dim = p.emb_hidden_dim
if p.gru_type == "grouped":
self.emb_gru = GroupedGRU(
p.conv_ch * p.nb_erb // 4, # For compat
self.emb_out_dim,
num_layers=p.emb_num_layers - 1,
batch_first=True,
groups=p.gru_groups,
shuffle=p.group_shuffle,
add_outputs=True,
)
# SqueezedGRU uses GroupedLinearEinsum, so let's use it here as well
fc_emb = GroupedLinear(
p.emb_hidden_dim,
p.conv_ch * p.nb_erb // 4,
groups=p.lin_groups,
shuffle=p.group_shuffle,
)
self.fc_emb = nn.Sequential(fc_emb, nn.ReLU(inplace=True))
else:
self.emb_gru = SqueezedGRU(
self.emb_out_dim,
self.emb_out_dim,
output_size=p.conv_ch * p.nb_erb // 4,
num_layers=p.emb_num_layers - 1,
batch_first=True,
gru_skip_op=nn.Identity,
linear_groups=p.lin_groups,
linear_act_layer=partial(nn.ReLU, inplace=True),
)
self.fc_emb = nn.Identity()
tconv_layer = partial(
ConvTranspose2dNormAct,
kernel_size=p.conv_kernel,
bias=False,
separable=True,
)
conv_layer = partial(
Conv2dNormAct,
bias=False,
separable=True,
)
# convt: TransposedConvolution, convp: Pathway (encoder to decoder) convolutions
self.conv3p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.convt3 = conv_layer(p.conv_ch, p.conv_ch, kernel_size=p.conv_kernel)
self.conv2p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.convt2 = tconv_layer(p.conv_ch, p.conv_ch, fstride=2)
self.conv1p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.convt1 = tconv_layer(p.conv_ch, p.conv_ch, fstride=2)
self.conv0p = conv_layer(p.conv_ch, p.conv_ch, kernel_size=1)
self.conv0_out = conv_layer(
p.conv_ch, 1, kernel_size=p.conv_kernel, activation_layer=nn.Sigmoid
)
def forward(self, emb, e3, e2, e1, e0) -> Tensor:
# Estimates erb mask
b, _, t, f8 = e3.shape
emb, _ = self.emb_gru(emb)
emb = self.fc_emb(emb)
emb = emb.view(b, t, f8, -1).permute(0, 3, 1, 2) # [B, C*8, T, F/8]
e3 = self.convt3(self.conv3p(e3) + emb) # [B, C*4, T, F/4]
e2 = self.convt2(self.conv2p(e2) + e3) # [B, C*2, T, F/2]
e1 = self.convt1(self.conv1p(e1) + e2) # [B, C, T, F]
m = self.conv0_out(self.conv0p(e0) + e1) # [B, 1, T, F]
return m
class DfOutputReshapeMF(nn.Module):
"""Coefficients output reshape for multiframe/MultiFrameModule
Requires input of shape B, C, T, F, 2.
"""
def __init__(self, df_order: int, df_bins: int):
super().__init__()
self.df_order = df_order
self.df_bins = df_bins
def forward(self, coefs: Tensor) -> Tensor:
# [B, T, F, O*2] -> [B, O, T, F, 2]
coefs = coefs.view(*coefs.shape[:-1], -1, 2)
coefs = coefs.permute(0, 3, 1, 2, 4)
return coefs
class DfDecoder(nn.Module):
def __init__(self, out_channels: int = -1):
super().__init__()
p = ModelParams()
layer_width = p.conv_ch
self.emb_dim = p.emb_hidden_dim
self.df_n_hidden = p.df_hidden_dim
self.df_n_layers = p.df_num_layers
self.df_order = p.df_order
self.df_bins = p.nb_df
self.gru_groups = p.gru_groups
self.df_out_ch = out_channels if out_channels > 0 else p.df_order * 2
conv_layer = partial(Conv2dNormAct, separable=True, bias=False)
kt = p.df_pathway_kernel_size_t
self.df_convp = conv_layer(layer_width, self.df_out_ch, fstride=1, kernel_size=(kt, 1))
if p.gru_type == "grouped":
self.df_gru = GroupedGRU(
p.emb_hidden_dim,
p.df_hidden_dim,
num_layers=self.df_n_layers,
batch_first=True,
groups=p.gru_groups,
shuffle=p.group_shuffle,
add_outputs=True,
)
else:
self.df_gru = SqueezedGRU(
p.emb_hidden_dim,
p.df_hidden_dim,
num_layers=self.df_n_layers,
batch_first=True,
gru_skip_op=nn.Identity,
linear_act_layer=partial(nn.ReLU, inplace=True),
)
p.df_gru_skip = p.df_gru_skip.lower()
assert p.df_gru_skip in ("none", "identity", "groupedlinear")
self.df_skip: Optional[nn.Module]
if p.df_gru_skip == "none":
self.df_skip = None
elif p.df_gru_skip == "identity":
assert p.emb_hidden_dim == p.df_hidden_dim, "Dimensions do not match"
self.df_skip = nn.Identity()
elif p.df_gru_skip == "groupedlinear":
self.df_skip = GroupedLinearEinsum(
p.emb_hidden_dim, p.df_hidden_dim, groups=p.lin_groups
)
else:
raise NotImplementedError()
assert p.df_output_layer in ("linear", "groupedlinear")
self.df_out: nn.Module
out_dim = self.df_bins * self.df_out_ch
if p.df_output_layer == "linear":
df_out = nn.Linear(self.df_n_hidden, out_dim)
elif p.df_output_layer == "groupedlinear":
df_out = GroupedLinearEinsum(self.df_n_hidden, out_dim, groups=p.lin_groups)
else:
raise NotImplementedError
self.df_out = nn.Sequential(df_out, nn.Tanh())
self.df_fc_a = nn.Sequential(nn.Linear(self.df_n_hidden, 1), nn.Sigmoid())
self.out_transform = DfOutputReshapeMF(self.df_order, self.df_bins)
def forward(self, emb: Tensor, c0: Tensor) -> Tuple[Tensor, Tensor]:
b, t, _ = emb.shape
c, _ = self.df_gru(emb) # [B, T, H], H: df_n_hidden
if self.df_skip is not None:
c += self.df_skip(emb)
c0 = self.df_convp(c0).permute(0, 2, 3, 1) # [B, T, F, O*2], channels_last
alpha = self.df_fc_a(c) # [B, T, 1]
c = self.df_out(c) # [B, T, F*O*2], O: df_order
c = c.view(b, t, self.df_bins, self.df_out_ch) + c0 # [B, T, F, O*2]
c = self.out_transform(c)
return c, alpha
class DfNet(nn.Module):
run_df: Final[bool]
pad_specf: Final[bool]
def __init__(
self,
erb_fb: Tensor,
erb_inv_fb: Tensor,
run_df: bool = True,
train_mask: bool = True,
):
super().__init__()
p = ModelParams()
layer_width = p.conv_ch
assert p.nb_erb % 8 == 0, "erb_bins should be divisible by 8"
self.df_lookahead = p.df_lookahead if p.pad_mode == "model" else 0
self.nb_df = p.nb_df
self.freq_bins: int = p.fft_size // 2 + 1
self.emb_dim: int = layer_width * p.nb_erb
self.erb_bins: int = p.nb_erb
if p.conv_lookahead > 0 and p.pad_mode.startswith("input"):
self.pad_feat = nn.ConstantPad2d((0, 0, -p.conv_lookahead, p.conv_lookahead), 0.0)
else:
self.pad_feat = nn.Identity()
self.pad_specf = p.pad_mode.endswith("specf")
if p.df_lookahead > 0 and self.pad_specf:
self.pad_spec = nn.ConstantPad3d((0, 0, 0, 0, -p.df_lookahead, p.df_lookahead), 0.0)
else:
self.pad_spec = nn.Identity()
if (p.conv_lookahead > 0 or p.df_lookahead > 0) and p.pad_mode.startswith("output"):
assert p.conv_lookahead == p.df_lookahead
pad = (0, 0, 0, 0, -p.conv_lookahead, p.conv_lookahead)
self.pad_out = nn.ConstantPad3d(pad, 0.0)
else:
self.pad_out = nn.Identity()
self.register_buffer("erb_fb", erb_fb)
self.enc = Encoder()
self.erb_dec = ErbDecoder()
self.mask = Mask(erb_inv_fb, post_filter=p.mask_pf)
self.df_order = p.df_order
self.df_bins = p.nb_df
self.df_op: Union[DfOp, MultiFrameModule]
if p.dfop_method == "real_unfold":
raise ValueError("RealUnfold DF OP is now unsupported.")
assert p.df_output_layer != "linear", "Must be used with `groupedlinear`"
self.df_op = MF_METHODS[p.dfop_method](
num_freqs=p.nb_df, frame_size=p.df_order, lookahead=self.df_lookahead
)
n_ch_out = self.df_op.num_channels()
self.df_dec = DfDecoder(out_channels=n_ch_out)
self.run_df = run_df
if not run_df:
logger.warning("Runing without DF")
self.train_mask = train_mask
assert p.df_n_iter == 1
def forward(
self,
spec: Tensor,
feat_erb: Tensor,
feat_spec: Tensor, # Not used, take spec modified by mask instead
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Forward method of DeepFilterNet2.
Args:
spec (Tensor): Spectrum of shape [B, 1, T, F, 2]
feat_erb (Tensor): ERB features of shape [B, 1, T, E]
feat_spec (Tensor): Complex spectrogram features of shape [B, 1, T, F']
Returns:
spec (Tensor): Enhanced spectrum of shape [B, 1, T, F, 2]
m (Tensor): ERB mask estimate of shape [B, 1, T, E]
lsnr (Tensor): Local SNR estimate of shape [B, T, 1]
"""
feat_spec = feat_spec.squeeze(1).permute(0, 3, 1, 2)
feat_erb = self.pad_feat(feat_erb)
feat_spec = self.pad_feat(feat_spec)
e0, e1, e2, e3, emb, c0, lsnr = self.enc(feat_erb, feat_spec)
m = self.erb_dec(emb, e3, e2, e1, e0)
m = self.pad_out(m.unsqueeze(-1)).squeeze(-1)
spec = self.mask(spec, m)
if self.run_df:
df_coefs, df_alpha = self.df_dec(emb, c0)
df_coefs = self.pad_out(df_coefs)
if self.pad_specf:
# Only pad the lower part of the spectrum.
spec_f = self.pad_spec(spec)
spec_f = self.df_op(spec_f, df_coefs)
spec[..., : self.nb_df, :] = spec_f[..., : self.nb_df, :]
else:
spec = self.pad_spec(spec)
spec = self.df_op(spec, df_coefs)
else:
df_alpha = torch.zeros(())
return spec, m, lsnr, df_alpha
|