Spaces:
Running
Running
File size: 11,221 Bytes
fc5ed00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
from abc import ABC, abstractmethod
from typing import Dict, Final
import torch
import torch.nn.functional as F
from torch import Tensor, nn
class MultiFrameModule(nn.Module, ABC):
"""Multi-frame speech enhancement modules.
Signal model and notation:
Noisy: `x = s + n`
Enhanced: `y = f(x)`
Objective: `min ||s - y||`
PSD: Power spectral density, notated eg. as `Rxx` for noisy PSD.
IFC: Inter-frame correlation vector: PSD*u, u: selection vector. Notated as `rxx`
"""
num_freqs: Final[int]
frame_size: Final[int]
need_unfold: Final[bool]
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0):
"""Multi-Frame filtering module.
Args:
num_freqs (int): Number of frequency bins used for filtering.
frame_size (int): Frame size in FD domain.
lookahead (int): Lookahead, may be used to select the output time step. Note: This
module does not add additional padding according to lookahead!
"""
super().__init__()
self.num_freqs = num_freqs
self.frame_size = frame_size
self.pad = nn.ConstantPad2d((0, 0, frame_size - 1, 0), 0.0)
self.need_unfold = frame_size > 1
self.lookahead = lookahead
def spec_unfold(self, spec: Tensor):
"""Pads and unfolds the spectrogram according to frame_size.
Args:
spec (complex Tensor): Spectrogram of shape [B, C, T, F]
Returns:
spec (Tensor): Unfolded spectrogram of shape [B, C, T, F, N], where N: frame_size.
"""
if self.need_unfold:
return self.pad(spec).unfold(2, self.frame_size, 1)
return spec.unsqueeze(-1)
def forward(self, spec: Tensor, coefs: Tensor):
"""Pads and unfolds the spectrogram and forwards to impl.
Args:
spec (Tensor): Spectrogram of shape [B, C, T, F, 2]
coefs (Tensor): Spectrogram of shape [B, C, T, F, 2]
"""
spec_u = self.spec_unfold(torch.view_as_complex(spec))
coefs = torch.view_as_complex(coefs)
spec_f = spec_u.narrow(-2, 0, self.num_freqs)
spec_f = self.forward_impl(spec_f, coefs)
if self.training:
spec = spec.clone()
spec[..., : self.num_freqs, :] = torch.view_as_real(spec_f)
return spec
@abstractmethod
def forward_impl(self, spec: Tensor, coefs: Tensor) -> Tensor:
"""Forward impl taking complex spectrogram and coefficients.
Args:
spec (complex Tensor): Spectrogram of shape [B, C1, T, F, N]
coefs (complex Tensor): Coefficients [B, C2, T, F]
Returns:
spec (complex Tensor): Enhanced spectrogram of shape [B, C1, T, F]
"""
...
@abstractmethod
def num_channels(self) -> int:
"""Return the number of required channels.
If multiple inputs are required, then all these should be combined in one Tensor containing
the summed channels.
"""
...
def psd(x: Tensor, n: int) -> Tensor:
"""Compute the PSD correlation matrix Rxx for a spectrogram.
That is, `X*conj(X)`, where `*` is the outer product.
Args:
x (complex Tensor): Spectrogram of shape [B, C, T, F]. Will be unfolded with `n` steps over
the time axis.
Returns:
Rxx (complex Tensor): Correlation matrix of shape [B, C, T, F, N, N]
"""
x = F.pad(x, (0, 0, n - 1, 0)).unfold(-2, n, 1)
return torch.einsum("...n,...m->...mn", x, x.conj())
def df(spec: Tensor, coefs: Tensor) -> Tensor:
"""Deep filter implemenation using `torch.einsum`. Requires unfolded spectrogram.
Args:
spec (complex Tensor): Spectrogram of shape [B, C, T, F, N]
coefs (complex Tensor): Spectrogram of shape [B, C, N, T, F]
Returns:
spec (complex Tensor): Spectrogram of shape [B, C, T, F]
"""
return torch.einsum("...tfn,...ntf->...tf", spec, coefs)
class CRM(MultiFrameModule):
"""Complex ratio mask."""
def __init__(self, num_freqs: int, frame_size: int = 1, lookahead: int = 0):
assert frame_size == 1 and lookahead == 0, (frame_size, lookahead)
super().__init__(num_freqs, 1)
def forward_impl(self, spec: Tensor, coefs: Tensor):
return spec.squeeze(-1).mul(coefs)
def num_channels(self):
return 2
class DF(MultiFrameModule):
conj: Final[bool]
"""Deep Filtering."""
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0, conj: bool = False):
super().__init__(num_freqs, frame_size, lookahead)
self.conj = conj
def forward_impl(self, spec: Tensor, coefs: Tensor):
coefs = coefs.view(coefs.shape[0], -1, self.frame_size, *coefs.shape[2:])
if self.conj:
coefs = coefs.conj()
return df(spec, coefs)
def num_channels(self):
return self.frame_size * 2
class MfWf(MultiFrameModule):
"""Multi-frame Wiener filter base module."""
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0):
"""Multi-frame Wiener Filter.
Several implementation methods are available resulting in different number of required input
coefficient channels.
Methods:
psd_ifc: Predict PSD `Rxx` and IFC `rss`.
df: Use deep filtering to predict speech and noisy spectrograms. These will be used for
PSD calculation for Wiener filtering. Alias: `df_sx`
c: Directly predict Wiener filter coefficients. Computation same as deep filtering.
"""
super().__init__(num_freqs, frame_size, lookahead=0)
self.idx = -lookahead
def num_channels(self):
return self.num_channels
@staticmethod
def solve(Rxx, rss, diag_eps: float = 1e-8, eps: float = 1e-7) -> Tensor:
return torch.einsum(
"...nm,...m->...n", torch.inverse(_tik_reg(Rxx, diag_eps, eps)), rss
) # [T, F, N]
@abstractmethod
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor:
"""Multi-frame Wiener filter impl taking complex spectrogram and coefficients.
Coefficients may be split into multiple parts w.g. for multiple DF coefs or PSDs.
Args:
spec (complex Tensor): Spectrogram of shape [B, C1, T, F, N]
coefs (complex Tensor): Coefficients [B, C2, T, F]
Returns:
c (complex Tensor): MfWf coefs of shape [B, C1, T, F, N]
"""
...
def forward_impl(self, spec: Tensor, coefs: Tensor) -> Tensor:
coefs = self.mfwf(spec, coefs)
return self.apply_coefs(spec, coefs)
@staticmethod
def apply_coefs(spec: Tensor, coefs: Tensor) -> Tensor:
# spec: [B, C, T, F, N]
# coefs: [B, C, T, F, N]
return torch.einsum("...n,...n->...", spec, coefs)
class MfWfDf(MfWf):
eps_diag: Final[float]
def __init__(
self,
num_freqs: int,
frame_size: int,
lookahead: int = 0,
eps_diag: float = 1e-7,
eps: float = 1e-7,
):
super().__init__(num_freqs, frame_size, lookahead)
self.eps_diag = eps_diag
self.eps = eps
def num_channels(self):
# frame_size/df_order * 2 (x/s) * 2 (re/im)
return self.frame_size * 4
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor:
coefs.chunk
df_s, df_x = torch.chunk(coefs, 2, 1) # [B, C, T, F, N]
df_s = df_s.unflatten(1, (-1, self.frame_size))
df_x = df_x.unflatten(1, (-1, self.frame_size))
spec_s = df(spec, df_s) # [B, C, T, F]
spec_x = df(spec, df_x)
Rss = psd(spec_s, self.frame_size) # [B, C, T, F, N. N]
Rxx = psd(spec_x, self.frame_size)
rss = Rss[..., -1] # TODO: use -1 or self.idx?
c = self.solve(Rxx, rss, self.eps_diag, self.eps) # [B, C, T, F, N]
return c
class MfWfPsd(MfWf):
"""Multi-frame Wiener filter by predicting noisy PSD `Rxx` and speech IFC `rss`."""
def num_channels(self):
# (Rxx + rss) * 2 (re/im)
return (self.frame_size**2 + self.frame_size) * 2
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor: # type: ignore
Rxx, rss = torch.split(coefs.movedim(1, -1), [self.frame_size**2, self.frame_size], -1)
c = self.solve(Rxx.unflatten(-1, (self.frame_size, self.frame_size)), rss)
return c
class MfWfC(MfWf):
"""Multi-frame Wiener filter by directly predicting the MfWf coefficients."""
def num_channels(self):
# mfwf coefs * 2 (re/im)
return self.frame_size * 2
def mfwf(self, spec: Tensor, coefs: Tensor) -> Tensor: # type: ignore
coefs = coefs.unflatten(1, (-1, self.frame_size)).permute(
0, 1, 3, 4, 2
) # [B, C*N, T, F] -> [B, C, T, F, N]
return coefs
class MvdrSouden(MultiFrameModule):
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0):
super().__init__(num_freqs, frame_size, lookahead)
class MvdrEvd(MultiFrameModule):
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0):
super().__init__(num_freqs, frame_size, lookahead)
class MvdrRtfPower(MultiFrameModule):
def __init__(self, num_freqs: int, frame_size: int, lookahead: int = 0):
super().__init__(num_freqs, frame_size, lookahead)
MF_METHODS: Dict[str, MultiFrameModule] = {
"crm": CRM,
"df": DF,
"mfwf_df": MfWfDf,
"mfwf_df_sx": MfWfDf,
"mfwf_psd": MfWfPsd,
"mfwf_psd_ifc": MfWfPsd,
"mfwf_c": MfWfC,
}
# From torchaudio
def _compute_mat_trace(input: torch.Tensor, dim1: int = -1, dim2: int = -2) -> torch.Tensor:
r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions.
Args:
input (torch.Tensor): Tensor of dimension `(..., channel, channel)`
dim1 (int, optional): the first dimension of the diagonal matrix
(Default: -1)
dim2 (int, optional): the second dimension of the diagonal matrix
(Default: -2)
Returns:
Tensor: trace of the input Tensor
"""
assert input.ndim >= 2, "The dimension of the tensor must be at least 2."
assert (
input.shape[dim1] == input.shape[dim2]
), "The size of ``dim1`` and ``dim2`` must be the same."
input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2)
return input.sum(dim=-1)
def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor:
"""Perform Tikhonov regularization (only modifying real part).
Args:
mat (torch.Tensor): input matrix (..., channel, channel)
reg (float, optional): regularization factor (Default: 1e-8)
eps (float, optional): a value to avoid the correlation matrix is all-zero (Default: ``1e-8``)
Returns:
Tensor: regularized matrix (..., channel, channel)
"""
# Add eps
C = mat.size(-1)
eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
epsilon = _compute_mat_trace(mat).real[..., None, None] * reg
# in case that correlation_matrix is all-zero
epsilon = epsilon + eps
mat = mat + epsilon * eye[..., :, :]
return mat
|