OcTra / df_local /checkpoint.py
arcan3's picture
adding rust
35916c5
raw
history blame
7.95 kB
import glob
import os
import re
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from loguru import logger
from torch import nn
from df_local.config import Csv, config
from df_local.model import init_model
from df_local.utils import check_finite_module
from libdf import DF
def get_epoch(cp) -> int:
return int(os.path.basename(cp).split(".")[0].split("_")[-1])
def load_model(
cp_dir: Optional[str],
df_state: DF,
jit: bool = False,
mask_only: bool = False,
train_df_only: bool = False,
extension: str = "ckpt",
epoch: Union[str, int, None] = "latest",
) -> Tuple[nn.Module, int]:
if mask_only and train_df_only:
raise ValueError("Only one of `mask_only` `train_df_only` can be enabled")
model = init_model(df_state, run_df=mask_only is False, train_mask=train_df_only is False)
if jit:
model = torch.jit.script(model)
blacklist: List[str] = config("CP_BLACKLIST", [], Csv(), save=False, section="train") # type: ignore
if cp_dir is not None:
epoch = read_cp(
model, "model", cp_dir, blacklist=blacklist, extension=extension, epoch=epoch
)
epoch = 0 if epoch is None else epoch
else:
epoch = 0
return model, epoch
def read_cp(
obj: Union[torch.optim.Optimizer, nn.Module],
name: str,
dirname: str,
epoch: Union[str, int, None] = "latest",
extension="ckpt",
blacklist=[],
log: bool = True,
):
checkpoints = []
if isinstance(epoch, str):
assert epoch in ("best", "latest")
if epoch == "best":
checkpoints = glob.glob(os.path.join(dirname, f"{name}*.{extension}.best"))
if len(checkpoints) == 0:
logger.warning("Could not find `best` checkpoint. Checking for default...")
if len(checkpoints) == 0:
checkpoints = glob.glob(os.path.join(dirname, f"{name}*.{extension}"))
checkpoints += glob.glob(os.path.join(dirname, f"{name}*.{extension}.best"))
if len(checkpoints) == 0:
return None
if isinstance(epoch, int):
latest = next((x for x in checkpoints if get_epoch(x) == epoch), None)
if latest is None:
logger.error(f"Could not find checkpoint of epoch {epoch}")
exit(1)
else:
latest = max(checkpoints, key=get_epoch)
epoch = get_epoch(latest)
if log:
logger.info("Found checkpoint {} with epoch {}".format(latest, epoch))
latest = torch.load(latest, map_location="cpu")
latest = {k.replace("clc", "df"): v for k, v in latest.items()}
if blacklist:
reg = re.compile("".join(f"({b})|" for b in blacklist)[:-1])
len_before = len(latest)
latest = {k: v for k, v in latest.items() if reg.search(k) is None}
if len(latest) < len_before:
logger.info("Filtered checkpoint modules: {}".format(blacklist))
if isinstance(obj, nn.Module):
while True:
try:
missing, unexpected = obj.load_state_dict(latest, strict=False)
except RuntimeError as e:
e_str = str(e)
logger.warning(e_str)
if "size mismatch" in e_str:
latest = {k: v for k, v in latest.items() if k not in e_str}
continue
raise e
break
for key in missing:
logger.warning(f"Missing key: '{key}'")
for key in unexpected:
if key.endswith(".h0"):
continue
logger.warning(f"Unexpected key: {key}")
return epoch
obj.load_state_dict(latest)
def write_cp(
obj: Union[torch.optim.Optimizer, nn.Module],
name: str,
dirname: str,
epoch: int,
extension="ckpt",
metric: Optional[float] = None,
cmp="min",
):
check_finite_module(obj)
n_keep = config("n_checkpoint_history", default=3, cast=int, section="train")
n_keep_best = config("n_best_checkpoint_history", default=5, cast=int, section="train")
if metric is not None:
assert cmp in ("min", "max")
metric = float(metric) # Make sure it is not an integer
# Each line contains a previous best with entries: (epoch, metric)
with open(os.path.join(dirname, ".best"), "a+") as prev_best_f:
prev_best_f.seek(0) # "a+" creates a file in read/write mode without truncating
lines = prev_best_f.readlines()
if len(lines) == 0:
prev_best = float("inf" if cmp == "min" else "-inf")
else:
prev_best = float(lines[-1].strip().split(" ")[1])
cmp = "__lt__" if cmp == "min" else "__gt__"
if getattr(metric, cmp)(prev_best):
logger.info(f"Saving new best checkpoint at epoch {epoch} with metric: {metric}")
prev_best_f.seek(0, os.SEEK_END)
np.savetxt(prev_best_f, np.array([[float(epoch), metric]]))
cp_name = os.path.join(dirname, f"{name}_{epoch}.{extension}.best")
torch.save(obj.state_dict(), cp_name)
cleanup(name, dirname, extension + ".best", nkeep=n_keep_best)
cp_name = os.path.join(dirname, f"{name}_{epoch}.{extension}")
logger.info(f"Writing checkpoint {cp_name} with epoch {epoch}")
torch.save(obj.state_dict(), cp_name)
cleanup(name, dirname, extension, nkeep=n_keep)
def cleanup(name: str, dirname: str, extension: str, nkeep=5):
if nkeep < 0:
return
checkpoints = glob.glob(os.path.join(dirname, f"{name}*.{extension}"))
if len(checkpoints) == 0:
return
checkpoints = sorted(checkpoints, key=get_epoch, reverse=True)
for cp in checkpoints[nkeep:]:
logger.debug("Removing old checkpoint: {}".format(cp))
os.remove(cp)
def check_patience(
dirname: str, max_patience: int, new_metric: float, cmp: str = "min", raise_: bool = True
):
cmp = "__lt__" if cmp == "min" else "__gt__"
new_metric = float(new_metric) # Make sure it is not an integer
prev_patience, prev_metric = read_patience(dirname)
if prev_patience is None or getattr(new_metric, cmp)(prev_metric):
# We have a better new_metric, reset patience
write_patience(dirname, 0, new_metric)
else:
# We don't have a better metric, decrement patience
new_patience = prev_patience + 1
write_patience(dirname, new_patience, prev_metric)
if new_patience >= max_patience:
if raise_:
raise ValueError(
f"No improvements on validation metric ({new_metric}) for {max_patience} epochs. "
"Stopping."
)
else:
return False
return True
def read_patience(dirname: str) -> Tuple[Optional[int], float]:
fn = os.path.join(dirname, ".patience")
if not os.path.isfile(fn):
return None, 0.0
patience, metric = np.loadtxt(fn)
return int(patience), float(metric)
def write_patience(dirname: str, new_patience: int, metric: float):
return np.savetxt(os.path.join(dirname, ".patience"), [new_patience, metric])
def test_check_patience():
import tempfile
with tempfile.TemporaryDirectory() as d:
check_patience(d, 3, 1.0)
check_patience(d, 3, 1.0)
check_patience(d, 3, 1.0)
assert check_patience(d, 3, 1.0, raise_=False) is False
with tempfile.TemporaryDirectory() as d:
check_patience(d, 3, 1.0)
check_patience(d, 3, 0.9)
check_patience(d, 3, 1.0)
check_patience(d, 3, 1.0)
assert check_patience(d, 3, 1.0, raise_=False) is False
with tempfile.TemporaryDirectory() as d:
check_patience(d, 3, 1.0, cmp="max")
check_patience(d, 3, 1.9, cmp="max")
check_patience(d, 3, 1.0, cmp="max")
check_patience(d, 3, 1.0, cmp="max")
assert check_patience(d, 3, 1.0, cmp="max", raise_=False) is False