Spaces:
Running
Running
import collections | |
import math | |
import os | |
import random | |
import subprocess | |
from socket import gethostname | |
from typing import Any, Dict, Set, Tuple, Union | |
import numpy as np | |
import torch | |
from loguru import logger | |
from torch import Tensor | |
#from torch._six import string_classes | |
from torch.autograd import Function | |
from torch.types import Number | |
from df.config import config | |
from df.model import ModelParams | |
try: | |
from torchaudio.functional import resample as ta_resample | |
except ImportError: | |
from torchaudio.compliance.kaldi import resample_waveform as ta_resample # type: ignore | |
def get_resample_params(method: str) -> Dict[str, Any]: | |
params = { | |
"sinc_fast": {"resampling_method": "sinc_interpolation", "lowpass_filter_width": 16}, | |
"sinc_best": {"resampling_method": "sinc_interpolation", "lowpass_filter_width": 64}, | |
"kaiser_fast": { | |
"resampling_method": "kaiser_window", | |
"lowpass_filter_width": 16, | |
"rolloff": 0.85, | |
"beta": 8.555504641634386, | |
}, | |
"kaiser_best": { | |
"resampling_method": "kaiser_window", | |
"lowpass_filter_width": 16, | |
"rolloff": 0.9475937167399596, | |
"beta": 14.769656459379492, | |
}, | |
} | |
assert method in params.keys(), f"method must be one of {list(params.keys())}" | |
return params[method] | |
def resample(audio: Tensor, orig_sr: int, new_sr: int, method="sinc_fast"): | |
params = get_resample_params(method) | |
return ta_resample(audio, orig_sr, new_sr, **params) | |
def get_device(): | |
s = config("DEVICE", default="", section="train") | |
if s == "": | |
if torch.cuda.is_available(): | |
DEVICE = torch.device("cuda:0") | |
else: | |
DEVICE = torch.device("cpu") | |
else: | |
DEVICE = torch.device(s) | |
return DEVICE | |
def as_complex(x: Tensor): | |
if torch.is_complex(x): | |
return x | |
if x.shape[-1] != 2: | |
raise ValueError(f"Last dimension need to be of length 2 (re + im), but got {x.shape}") | |
if x.stride(-1) != 1: | |
x = x.contiguous() | |
return torch.view_as_complex(x) | |
def as_real(x: Tensor): | |
if torch.is_complex(x): | |
return torch.view_as_real(x) | |
return x | |
class angle_re_im(Function): | |
"""Similar to torch.angle but robustify the gradient for zero magnitude.""" | |
def forward(ctx, re: Tensor, im: Tensor): | |
ctx.save_for_backward(re, im) | |
return torch.atan2(im, re) | |
def backward(ctx, grad: Tensor) -> Tuple[Tensor, Tensor]: | |
re, im = ctx.saved_tensors | |
grad_inv = grad / (re.square() + im.square()).clamp_min_(1e-10) | |
return -im * grad_inv, re * grad_inv | |
class angle(Function): | |
"""Similar to torch.angle but robustify the gradient for zero magnitude.""" | |
def forward(ctx, x: Tensor): | |
ctx.save_for_backward(x) | |
return torch.atan2(x.imag, x.real) | |
def backward(ctx, grad: Tensor): | |
(x,) = ctx.saved_tensors | |
grad_inv = grad / (x.real.square() + x.imag.square()).clamp_min_(1e-10) | |
return torch.view_as_complex(torch.stack((-x.imag * grad_inv, x.real * grad_inv), dim=-1)) | |
def check_finite_module(obj, name="Module", _raise=True) -> Set[str]: | |
out: Set[str] = set() | |
if isinstance(obj, torch.nn.Module): | |
for name, child in obj.named_children(): | |
out = out | check_finite_module(child, name) | |
for name, param in obj.named_parameters(): | |
out = out | check_finite_module(param, name) | |
for name, buf in obj.named_buffers(): | |
out = out | check_finite_module(buf, name) | |
if _raise and len(out) > 0: | |
raise ValueError(f"{name} not finite during checkpoint writing including: {out}") | |
return out | |
def make_np(x: Union[Tensor, np.ndarray, Number]) -> np.ndarray: | |
"""Transforms Tensor to numpy. | |
Args: | |
x: An instance of torch tensor or caffe blob name | |
Returns: | |
numpy.array: Numpy array | |
""" | |
if isinstance(x, np.ndarray): | |
return x | |
if np.isscalar(x): | |
return np.array([x]) | |
if isinstance(x, Tensor): | |
return x.detach().cpu().numpy() | |
raise NotImplementedError( | |
"Got {}, but numpy array, scalar, or torch tensor are expected.".format(type(x)) | |
) | |
def get_norm_alpha(log: bool = True) -> float: | |
p = ModelParams() | |
a_ = _calculate_norm_alpha(sr=p.sr, hop_size=p.hop_size, tau=p.norm_tau) | |
precision = 3 | |
a = 1.0 | |
while a >= 1.0: | |
a = round(a_, precision) | |
precision += 1 | |
if log: | |
logger.info(f"Running with normalization window alpha = '{a}'") | |
return a | |
def _calculate_norm_alpha(sr: int, hop_size: int, tau: float): | |
"""Exponential decay factor alpha for a given tau (decay window size [s]).""" | |
dt = hop_size / sr | |
return math.exp(-dt / tau) | |
def check_manual_seed(seed: int = None): | |
"""If manual seed is not specified, choose a random one and communicate it to the user.""" | |
seed = seed or random.randint(1, 10000) | |
np.random.seed(seed) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
return seed | |
def get_git_root(): | |
git_local_dir = os.path.dirname(os.path.abspath(__file__)) | |
args = ["git", "-C", git_local_dir, "rev-parse", "--show-toplevel"] | |
return subprocess.check_output(args).strip().decode() | |
def get_commit_hash(): | |
"""Returns the current git commit.""" | |
try: | |
git_dir = get_git_root() | |
args = ["git", "-C", git_dir, "rev-parse", "--short", "--verify", "HEAD"] | |
commit = subprocess.check_output(args).strip().decode() | |
except subprocess.CalledProcessError: | |
# probably not in git repo | |
commit = None | |
return commit | |
def get_host() -> str: | |
return gethostname() | |
def get_branch_name(): | |
try: | |
git_dir = os.path.dirname(os.path.abspath(__file__)) | |
args = ["git", "-C", git_dir, "rev-parse", "--abbrev-ref", "HEAD"] | |
branch = subprocess.check_output(args).strip().decode() | |
except subprocess.CalledProcessError: | |
# probably not in git repo | |
branch = None | |
return branch | |
# from pytorch/ignite: | |
def apply_to_tensor(input_, func): | |
"""Apply a function on a tensor or mapping, or sequence of tensors.""" | |
if isinstance(input_, torch.nn.Module): | |
return [apply_to_tensor(c, func) for c in input_.children()] | |
elif isinstance(input_, torch.nn.Parameter): | |
return func(input_.data) | |
elif isinstance(input_, Tensor): | |
return func(input_) | |
elif isinstance(input_, str): | |
return input_ | |
elif isinstance(input_, collections.Mapping): | |
return {k: apply_to_tensor(sample, func) for k, sample in input_.items()} | |
elif isinstance(input_, collections.Iterable): | |
return [apply_to_tensor(sample, func) for sample in input_] | |
elif input_ is None: | |
return input_ | |
else: | |
return input_ | |
def detach_hidden(hidden: Any) -> Any: | |
"""Cut backpropagation graph. | |
Auxillary function to cut the backpropagation graph by detaching the hidden | |
vector. | |
""" | |
return apply_to_tensor(hidden, Tensor.detach) | |