import collections import math import os import random import subprocess from socket import gethostname from typing import Any, Dict, Set, Tuple, Union import numpy as np import torch from loguru import logger from torch import Tensor #from torch._six import string_classes from torch.autograd import Function from torch.types import Number from df_local.config import config from df_local.model import ModelParams try: from torchaudio.functional import resample as ta_resample except ImportError: from torchaudio.compliance.kaldi import resample_waveform as ta_resample # type: ignore def get_resample_params(method: str) -> Dict[str, Any]: params = { "sinc_fast": {"resampling_method": "sinc_interpolation", "lowpass_filter_width": 16}, "sinc_best": {"resampling_method": "sinc_interpolation", "lowpass_filter_width": 64}, "kaiser_fast": { "resampling_method": "kaiser_window", "lowpass_filter_width": 16, "rolloff": 0.85, "beta": 8.555504641634386, }, "kaiser_best": { "resampling_method": "kaiser_window", "lowpass_filter_width": 16, "rolloff": 0.9475937167399596, "beta": 14.769656459379492, }, } assert method in params.keys(), f"method must be one of {list(params.keys())}" return params[method] def resample(audio: Tensor, orig_sr: int, new_sr: int, method="sinc_fast"): params = get_resample_params(method) return ta_resample(audio, orig_sr, new_sr, **params) def get_device(): s = config("DEVICE", default="", section="train") if s == "": if torch.cuda.is_available(): DEVICE = torch.device("cuda:0") else: DEVICE = torch.device("cpu") else: DEVICE = torch.device(s) return DEVICE def as_complex(x: Tensor): if torch.is_complex(x): return x if x.shape[-1] != 2: raise ValueError(f"Last dimension need to be of length 2 (re + im), but got {x.shape}") if x.stride(-1) != 1: x = x.contiguous() return torch.view_as_complex(x) def as_real(x: Tensor): if torch.is_complex(x): return torch.view_as_real(x) return x class angle_re_im(Function): """Similar to torch.angle but robustify the gradient for zero magnitude.""" @staticmethod def forward(ctx, re: Tensor, im: Tensor): ctx.save_for_backward(re, im) return torch.atan2(im, re) @staticmethod def backward(ctx, grad: Tensor) -> Tuple[Tensor, Tensor]: re, im = ctx.saved_tensors grad_inv = grad / (re.square() + im.square()).clamp_min_(1e-10) return -im * grad_inv, re * grad_inv class angle(Function): """Similar to torch.angle but robustify the gradient for zero magnitude.""" @staticmethod def forward(ctx, x: Tensor): ctx.save_for_backward(x) return torch.atan2(x.imag, x.real) @staticmethod def backward(ctx, grad: Tensor): (x,) = ctx.saved_tensors grad_inv = grad / (x.real.square() + x.imag.square()).clamp_min_(1e-10) return torch.view_as_complex(torch.stack((-x.imag * grad_inv, x.real * grad_inv), dim=-1)) def check_finite_module(obj, name="Module", _raise=True) -> Set[str]: out: Set[str] = set() if isinstance(obj, torch.nn.Module): for name, child in obj.named_children(): out = out | check_finite_module(child, name) for name, param in obj.named_parameters(): out = out | check_finite_module(param, name) for name, buf in obj.named_buffers(): out = out | check_finite_module(buf, name) if _raise and len(out) > 0: raise ValueError(f"{name} not finite during checkpoint writing including: {out}") return out def make_np(x: Union[Tensor, np.ndarray, Number]) -> np.ndarray: """Transforms Tensor to numpy. Args: x: An instance of torch tensor or caffe blob name Returns: numpy.array: Numpy array """ if isinstance(x, np.ndarray): return x if np.isscalar(x): return np.array([x]) if isinstance(x, Tensor): return x.detach().cpu().numpy() raise NotImplementedError( "Got {}, but numpy array, scalar, or torch tensor are expected.".format(type(x)) ) def get_norm_alpha(log: bool = True) -> float: p = ModelParams() a_ = _calculate_norm_alpha(sr=p.sr, hop_size=p.hop_size, tau=p.norm_tau) precision = 3 a = 1.0 while a >= 1.0: a = round(a_, precision) precision += 1 if log: logger.info(f"Running with normalization window alpha = '{a}'") return a def _calculate_norm_alpha(sr: int, hop_size: int, tau: float): """Exponential decay factor alpha for a given tau (decay window size [s]).""" dt = hop_size / sr return math.exp(-dt / tau) def check_manual_seed(seed: int = None): """If manual seed is not specified, choose a random one and communicate it to the user.""" seed = seed or random.randint(1, 10000) np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) return seed def get_git_root(): git_local_dir = os.path.dirname(os.path.abspath(__file__)) args = ["git", "-C", git_local_dir, "rev-parse", "--show-toplevel"] return subprocess.check_output(args).strip().decode() def get_commit_hash(): """Returns the current git commit.""" try: git_dir = get_git_root() args = ["git", "-C", git_dir, "rev-parse", "--short", "--verify", "HEAD"] commit = subprocess.check_output(args).strip().decode() except subprocess.CalledProcessError: # probably not in git repo commit = None return commit def get_host() -> str: return gethostname() def get_branch_name(): try: git_dir = os.path.dirname(os.path.abspath(__file__)) args = ["git", "-C", git_dir, "rev-parse", "--abbrev-ref", "HEAD"] branch = subprocess.check_output(args).strip().decode() except subprocess.CalledProcessError: # probably not in git repo branch = None return branch # from pytorch/ignite: def apply_to_tensor(input_, func): """Apply a function on a tensor or mapping, or sequence of tensors.""" if isinstance(input_, torch.nn.Module): return [apply_to_tensor(c, func) for c in input_.children()] elif isinstance(input_, torch.nn.Parameter): return func(input_.data) elif isinstance(input_, Tensor): return func(input_) elif isinstance(input_, str): return input_ elif isinstance(input_, collections.Mapping): return {k: apply_to_tensor(sample, func) for k, sample in input_.items()} elif isinstance(input_, collections.Iterable): return [apply_to_tensor(sample, func) for sample in input_] elif input_ is None: return input_ else: return input_ def detach_hidden(hidden: Any) -> Any: """Cut backpropagation graph. Auxillary function to cut the backpropagation graph by detaching the hidden vector. """ return apply_to_tensor(hidden, Tensor.detach)