Spaces:
Build error
Build error
added labelling stages
Browse files- .gitignore +3 -0
- app.py +13 -7
- funcs/dataloader.py +107 -0
- funcs/plot_func.py +23 -11
- funcs/processor.py +5 -5
- funcs/som.py +425 -0
- ml_inference.py +30 -0
- models/cluster_som2.pkl +3 -0
- models/r10d_2.pth +3 -0
- requirements.txt +59 -4
- test_plot.py +40 -0
.gitignore
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
# Byte-compiled / optimized / DLL files
|
|
|
|
|
|
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
4 |
*$py.class
|
|
|
1 |
# Byte-compiled / optimized / DLL files
|
2 |
+
*.zip
|
3 |
+
Data-*
|
4 |
+
drive-*
|
5 |
__pycache__/
|
6 |
*.py[cod]
|
7 |
*$py.class
|
app.py
CHANGED
@@ -10,8 +10,7 @@ with gr.Blocks(title='Cabasus') as cabasus_sensor:
|
|
10 |
with gr.Row():
|
11 |
processed_file_box = gr.File(label='Processed CSV File')
|
12 |
json_file_box = gr.File(label='Generated Json file')
|
13 |
-
|
14 |
-
video_box = gr.PlayableVideo(label='Video box')
|
15 |
with gr.Row():
|
16 |
slice_size_slider = gr.inputs.Slider(16, 512, 1, 64, label="Slice Size")
|
17 |
sample_rate = gr.inputs.Slider(1, 199, 1, 20, label="Sample rate")
|
@@ -26,13 +25,20 @@ with gr.Blocks(title='Cabasus') as cabasus_sensor:
|
|
26 |
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
|
27 |
|
28 |
with gr.Row():
|
29 |
-
slice_slider = gr.Slider(minimum=
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
|
|
|
|
|
|
|
|
37 |
|
38 |
cabasus_sensor.queue(concurrency_count=2).launch(debug=True)
|
|
|
10 |
with gr.Row():
|
11 |
processed_file_box = gr.File(label='Processed CSV File')
|
12 |
json_file_box = gr.File(label='Generated Json file')
|
13 |
+
|
|
|
14 |
with gr.Row():
|
15 |
slice_size_slider = gr.inputs.Slider(16, 512, 1, 64, label="Slice Size")
|
16 |
sample_rate = gr.inputs.Slider(1, 199, 1, 20, label="Sample rate")
|
|
|
25 |
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
|
26 |
|
27 |
with gr.Row():
|
28 |
+
slice_slider = gr.Slider(minimum=1, maximum=300, label='Current slice', step=1)
|
29 |
|
30 |
+
with gr.Row():
|
31 |
+
plot_slice_leg = gr.Plot(label="Sliced Signal Plot")
|
32 |
+
get_real_slice = gr.Plot(label="Real Signal Plot")
|
33 |
|
34 |
+
with gr.Row():
|
35 |
+
animation = gr.PlayableVideo(label="Animated horse steps")
|
36 |
+
|
37 |
+
slices_per_leg = gr.Textbox(label="Number of slices found per LEG")
|
38 |
|
39 |
+
csv_file_box.change(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider], outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_real_slice])
|
40 |
+
leg_dropdown.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider], outputs=[plot_box_leg, plot_slice_leg, get_real_slice])
|
41 |
+
repeat_process.click(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider], outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_real_slice])
|
42 |
+
slice_slider.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider], outputs=[plot_box_leg, plot_slice_leg, get_real_slice])
|
43 |
|
44 |
cabasus_sensor.queue(concurrency_count=2).launch(debug=True)
|
funcs/dataloader.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob, json, os
|
2 |
+
import torch
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
|
7 |
+
class BaseDataset2(Dataset):
|
8 |
+
"""Template class for all datasets in the project."""
|
9 |
+
|
10 |
+
def __init__(self, x, y):
|
11 |
+
"""Initialize dataset.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
x(ndarray): Input features.
|
15 |
+
y(ndarray): Targets.
|
16 |
+
"""
|
17 |
+
self.data = torch.from_numpy(x).float()
|
18 |
+
self.targets = torch.from_numpy(y).float()
|
19 |
+
self.latents = None
|
20 |
+
|
21 |
+
self.labels = None
|
22 |
+
self.is_radial = []
|
23 |
+
self.partition = True
|
24 |
+
|
25 |
+
def __getitem__(self, index):
|
26 |
+
return self.data[index], self.targets[index], index
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.data)
|
30 |
+
|
31 |
+
def numpy(self, idx=None):
|
32 |
+
"""Get dataset as ndarray.
|
33 |
+
|
34 |
+
Specify indices to return a subset of the dataset, otherwise return whole dataset.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
idx(int, optional): Specify index or indices to return.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
ndarray: Return flattened dataset as a ndarray.
|
41 |
+
|
42 |
+
"""
|
43 |
+
n = len(self)
|
44 |
+
|
45 |
+
data = self.data.numpy().reshape((n, -1))
|
46 |
+
|
47 |
+
if idx is None:
|
48 |
+
return data, self.targets.numpy()
|
49 |
+
else:
|
50 |
+
return data[idx], self.targets[idx].numpy()
|
51 |
+
|
52 |
+
def get_latents(self):
|
53 |
+
"""Get latent variables.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
latents(ndarray): Latent variables for each sample.
|
57 |
+
"""
|
58 |
+
return self.latents
|
59 |
+
|
60 |
+
|
61 |
+
def load_json(file_path):
|
62 |
+
with open(file_path, 'r') as f:
|
63 |
+
data = json.load(f)
|
64 |
+
return data
|
65 |
+
|
66 |
+
def read_json_files(file):
|
67 |
+
data_x = []
|
68 |
+
data_y = []
|
69 |
+
|
70 |
+
samples = load_json(file)
|
71 |
+
valid_samples = 0
|
72 |
+
|
73 |
+
for sample in samples:
|
74 |
+
data = []
|
75 |
+
skip_sample = False
|
76 |
+
for key in ['AX1', 'AX2', 'AX3', 'AX4', 'AY1', 'AY2', 'AY3', 'AY4', 'AZ1', 'AZ2', 'AZ3', 'AZ4', 'GX1', 'GX2', 'GX3', 'GX4', 'GY1', 'GY2', 'GY3', 'GY4', 'GZ1', 'GZ2', 'GZ3', 'GZ4', 'GZ1_precise_time_diff', 'GZ2_precise_time_diff', 'GZ3_precise_time_diff', 'GZ4_precise_time_diff', 'precise_time_diff']:
|
77 |
+
if key in sample:
|
78 |
+
if key.endswith('_precise_time_diff') or key == 'precise_time_diff':
|
79 |
+
if sample[key] is None:
|
80 |
+
skip_sample = True
|
81 |
+
break
|
82 |
+
data.append(round(sample[key])*20)
|
83 |
+
else:
|
84 |
+
data.extend(sample[key])
|
85 |
+
else:
|
86 |
+
warnings.warn(f"KeyError: {key} not found in JSON file: {file}")
|
87 |
+
|
88 |
+
if skip_sample:
|
89 |
+
#warnings.warn(f"Skipped sample with null values in JSON file: {json_file}")
|
90 |
+
continue
|
91 |
+
|
92 |
+
if len(data) != 768*2 + 5: # 24 keys * 64 values each + 5 additional values
|
93 |
+
warnings.warn(f"Incomplete sample in JSON file: {file}")
|
94 |
+
continue
|
95 |
+
|
96 |
+
valid_samples += 1
|
97 |
+
tensor = torch.tensor(data, dtype=torch.float32)
|
98 |
+
data_x.append(tensor)
|
99 |
+
data_y.append(1)
|
100 |
+
|
101 |
+
if valid_samples == 0:
|
102 |
+
warnings.warn(f"No valid samples found in JSON file: {file}")
|
103 |
+
|
104 |
+
if not data_x:
|
105 |
+
raise ValueError("No valid samples found in all the JSON files.")
|
106 |
+
|
107 |
+
return torch.stack(data_x), torch.tensor(data_y, dtype=torch.long)
|
funcs/plot_func.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import json
|
2 |
import matplotlib
|
3 |
|
|
|
4 |
import pandas as pd
|
5 |
import matplotlib.pyplot as plt
|
6 |
|
7 |
matplotlib.use('Agg')
|
|
|
8 |
|
9 |
def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
|
10 |
# Read the JSON file
|
@@ -18,35 +20,45 @@ def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
|
|
18 |
# Concatenate the slices and create a new timestamp series with 20ms intervals
|
19 |
timestamps = []
|
20 |
sensor_data = []
|
21 |
-
|
|
|
|
|
22 |
start_timestamp = slice_dict["timestamp"]
|
23 |
slice_length = len(slice_dict[sensor])
|
24 |
|
25 |
-
slice_timestamps = [start_timestamp + 20 * i for i in range(slice_length)]
|
26 |
timestamps.extend(slice_timestamps)
|
27 |
sensor_data.extend(slice_dict[sensor])
|
28 |
|
|
|
|
|
|
|
29 |
# Create a DataFrame with the sensor data
|
30 |
-
data = pd.DataFrame({sensor: sensor_data
|
31 |
|
32 |
# Plot the sensor data
|
33 |
fig, ax = plt.subplots(figsize=(12, 6))
|
34 |
-
ax = plt.plot(data[
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
|
44 |
plt.xlabel("Timestamp")
|
45 |
plt.ylabel(sensor)
|
46 |
plt.legend()
|
47 |
plt.tight_layout()
|
48 |
|
49 |
-
return fig
|
50 |
|
51 |
def plot_overlay_data_from_json(json_file, sensors, use_precise_timestamp=False):
|
52 |
# Read the JSON file
|
|
|
1 |
import json
|
2 |
import matplotlib
|
3 |
|
4 |
+
import numpy as np
|
5 |
import pandas as pd
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
8 |
matplotlib.use('Agg')
|
9 |
+
plt.style.use('ggplot')
|
10 |
|
11 |
def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
|
12 |
# Read the JSON file
|
|
|
20 |
# Concatenate the slices and create a new timestamp series with 20ms intervals
|
21 |
timestamps = []
|
22 |
sensor_data = []
|
23 |
+
slice_item = []
|
24 |
+
temp_end = 0
|
25 |
+
for slice_count, slice_dict in enumerate(slices):
|
26 |
start_timestamp = slice_dict["timestamp"]
|
27 |
slice_length = len(slice_dict[sensor])
|
28 |
|
29 |
+
slice_timestamps = [start_timestamp + 20 * i for i in range(temp_end, slice_length + temp_end)]
|
30 |
timestamps.extend(slice_timestamps)
|
31 |
sensor_data.extend(slice_dict[sensor])
|
32 |
|
33 |
+
temp_end += slice_length
|
34 |
+
slice_item.extend([slice_count+1]*len(slice_timestamps))
|
35 |
+
|
36 |
# Create a DataFrame with the sensor data
|
37 |
+
data = pd.DataFrame({sensor: sensor_data, 'slice selection': slice_item, 'time': timestamps})
|
38 |
|
39 |
# Plot the sensor data
|
40 |
fig, ax = plt.subplots(figsize=(12, 6))
|
41 |
+
ax = plt.plot(data['time'].to_list(), data[sensor].to_list())
|
42 |
|
43 |
+
df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
|
44 |
+
y = [np.NaN]*((int(slice_select)-1)*len(df_temp[sensor].to_list())) + df_temp[sensor].to_list() + [np.NaN]*((len(slices) - int(slice_select))*len(df_temp[sensor].to_list()))
|
45 |
+
x = data['time'].to_list()
|
46 |
+
ax = plt.plot(x, y, '-')
|
47 |
+
|
48 |
+
plt.xlabel("Timestamp")
|
49 |
+
plt.ylabel(sensor)
|
50 |
+
plt.legend()
|
51 |
+
plt.tight_layout()
|
52 |
|
53 |
+
fig1, ax1 = plt.subplots(figsize=(12, 6))
|
54 |
+
ax1 = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list())
|
55 |
|
56 |
plt.xlabel("Timestamp")
|
57 |
plt.ylabel(sensor)
|
58 |
plt.legend()
|
59 |
plt.tight_layout()
|
60 |
|
61 |
+
return fig, fig1
|
62 |
|
63 |
def plot_overlay_data_from_json(json_file, sensors, use_precise_timestamp=False):
|
64 |
# Read the JSON file
|
funcs/processor.py
CHANGED
@@ -9,11 +9,11 @@ def process_data(input_file, slice_size=64, min_slice_size=16, sample_rate=20, w
|
|
9 |
# Read the data from the file, including the CRC column
|
10 |
try:
|
11 |
if input_file.name is None:
|
12 |
-
return None, None, None, None, None, None
|
13 |
data = pd.read_csv(input_file.name, delimiter=";", index_col="NR", usecols=["NR", "TS", "LEG", "GX", "GY", "GZ", "AX", "AY", "AZ", "CRC"])
|
14 |
except:
|
15 |
if input_file is None:
|
16 |
-
return None, None, None, None, None, None
|
17 |
data = pd.read_csv(input_file, delimiter=";", index_col="NR", usecols=["NR", "TS", "LEG", "GX", "GY", "GZ", "AX", "AY", "AZ", "CRC"])
|
18 |
|
19 |
|
@@ -69,7 +69,7 @@ def process_data(input_file, slice_size=64, min_slice_size=16, sample_rate=20, w
|
|
69 |
if not no_significant_change_index.empty:
|
70 |
# Save the data up to the point where no significant change appears in all channels
|
71 |
data = data.loc[:no_significant_change_index[0]]
|
72 |
-
return None, None, f'Warning: gap of {gap_size} ms found at line {gap_start_index}', None, None, None
|
73 |
|
74 |
# Save the resulting DataFrame to a new file
|
75 |
data.to_csv('output.csv', sep=";", na_rep="NaN", float_format="%.0f")
|
@@ -77,10 +77,10 @@ def process_data(input_file, slice_size=64, min_slice_size=16, sample_rate=20, w
|
|
77 |
file, len_ = slice_csv_to_json('output.csv', slice_size, min_slice_size, sample_rate, window_size=window_size)
|
78 |
|
79 |
# get the plot automatically
|
80 |
-
sensor_fig = plot_sensor_data_from_json(file, "GZ1")
|
81 |
overlay_fig = plot_overlay_data_from_json(file, ["GZ1", "GZ2", "GZ3", "GZ4"], use_precise_timestamp=True)
|
82 |
|
83 |
#
|
84 |
|
85 |
|
86 |
-
return 'output.csv', file, f'{len_}', sensor_fig, overlay_fig, gr.Slider.update(interactive=True, maximum=len_, minimum=1, value=1)
|
|
|
9 |
# Read the data from the file, including the CRC column
|
10 |
try:
|
11 |
if input_file.name is None:
|
12 |
+
return None, None, None, None, None, None, None, None
|
13 |
data = pd.read_csv(input_file.name, delimiter=";", index_col="NR", usecols=["NR", "TS", "LEG", "GX", "GY", "GZ", "AX", "AY", "AZ", "CRC"])
|
14 |
except:
|
15 |
if input_file is None:
|
16 |
+
return None, None, None, None, None, None, None, None
|
17 |
data = pd.read_csv(input_file, delimiter=";", index_col="NR", usecols=["NR", "TS", "LEG", "GX", "GY", "GZ", "AX", "AY", "AZ", "CRC"])
|
18 |
|
19 |
|
|
|
69 |
if not no_significant_change_index.empty:
|
70 |
# Save the data up to the point where no significant change appears in all channels
|
71 |
data = data.loc[:no_significant_change_index[0]]
|
72 |
+
return None, None, f'Warning: gap of {gap_size} ms found at line {gap_start_index}', None, None, None, None, None
|
73 |
|
74 |
# Save the resulting DataFrame to a new file
|
75 |
data.to_csv('output.csv', sep=";", na_rep="NaN", float_format="%.0f")
|
|
|
77 |
file, len_ = slice_csv_to_json('output.csv', slice_size, min_slice_size, sample_rate, window_size=window_size)
|
78 |
|
79 |
# get the plot automatically
|
80 |
+
sensor_fig, slice_fig = plot_sensor_data_from_json(file, "GZ1")
|
81 |
overlay_fig = plot_overlay_data_from_json(file, ["GZ1", "GZ2", "GZ3", "GZ4"], use_precise_timestamp=True)
|
82 |
|
83 |
#
|
84 |
|
85 |
|
86 |
+
return 'output.csv', file, f'{len_}', sensor_fig, overlay_fig, gr.Slider.update(interactive=True, maximum=len_, minimum=1, value=1), slice_fig, None
|
funcs/som.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import hdbscan
|
3 |
+
from minisom import MiniSom
|
4 |
+
import pickle
|
5 |
+
from collections import Counter
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import phate
|
8 |
+
import imageio
|
9 |
+
from tqdm import tqdm
|
10 |
+
import io
|
11 |
+
import plotly.graph_objs as go
|
12 |
+
import plotly.subplots as sp
|
13 |
+
import umap
|
14 |
+
from sklearn.datasets import make_blobs
|
15 |
+
from sklearn.preprocessing import LabelEncoder
|
16 |
+
from sklearn.cluster import KMeans
|
17 |
+
from sklearn.semi_supervised import LabelSpreading
|
18 |
+
from moviepy.editor import *
|
19 |
+
|
20 |
+
class ClusterSOM:
|
21 |
+
def __init__(self):
|
22 |
+
self.hdbscan_model = None
|
23 |
+
self.som_models = {}
|
24 |
+
self.sigma_values = {}
|
25 |
+
self.mean_values = {}
|
26 |
+
self.cluster_mapping = {}
|
27 |
+
self.embedding = None
|
28 |
+
self.dim_red_op = None
|
29 |
+
|
30 |
+
def train(self, dataset, min_samples_per_cluster=100, n_clusters=None, som_size=(20, 20), sigma=1.0, learning_rate=0.5, num_iteration=200000, random_seed=42, n_neighbors=5, coverage=0.95):
|
31 |
+
"""
|
32 |
+
Train HDBSCAN and SOM models on the given dataset.
|
33 |
+
"""
|
34 |
+
# Train HDBSCAN model
|
35 |
+
print('Identifying clusters in the embedding ...')
|
36 |
+
self.hdbscan_model = hdbscan.HDBSCAN(min_cluster_size=min_samples_per_cluster)
|
37 |
+
self.hdbscan_model.fit(dataset)
|
38 |
+
|
39 |
+
# Calculate n_clusters if not provided
|
40 |
+
if n_clusters is None:
|
41 |
+
cluster_labels, counts = zip(*Counter(self.hdbscan_model.labels_).most_common())
|
42 |
+
cluster_labels = list(cluster_labels)
|
43 |
+
total_points = sum(counts)
|
44 |
+
covered_points = 0
|
45 |
+
n_clusters = 0
|
46 |
+
for count in counts:
|
47 |
+
covered_points += count
|
48 |
+
n_clusters += 1
|
49 |
+
if covered_points / total_points >= coverage:
|
50 |
+
break
|
51 |
+
|
52 |
+
# Train SOM models for the n_clusters most common clusters in the HDBSCAN model
|
53 |
+
cluster_labels, counts = zip(*Counter(self.hdbscan_model.labels_).most_common(n_clusters + 1))
|
54 |
+
cluster_labels = list(cluster_labels)
|
55 |
+
|
56 |
+
if -1 in cluster_labels:
|
57 |
+
cluster_labels.remove(-1)
|
58 |
+
else:
|
59 |
+
cluster_labels.pop()
|
60 |
+
|
61 |
+
for i, label in tqdm(enumerate(cluster_labels), total=len(cluster_labels), desc="Fitting 2D maps"):
|
62 |
+
if label == -1:
|
63 |
+
continue # Ignore noise
|
64 |
+
cluster_data = dataset[self.hdbscan_model.labels_ == label]
|
65 |
+
som = MiniSom(som_size[0], som_size[1], dataset.shape[1], sigma=sigma, learning_rate=learning_rate, random_seed=random_seed)
|
66 |
+
som.train_random(cluster_data, num_iteration)
|
67 |
+
self.som_models[i+1] = som
|
68 |
+
self.cluster_mapping[i+1] = label
|
69 |
+
|
70 |
+
# Compute sigma values
|
71 |
+
mean_cluster, sigma_cluster = self.compute_sigma_values(cluster_data, som_size, som, n_neighbors=n_neighbors)
|
72 |
+
self.sigma_values[i+1] = sigma_cluster
|
73 |
+
self.mean_values[i+1] = mean_cluster
|
74 |
+
|
75 |
+
def compute_sigma_values(self, cluster_data, som_size, som, n_neighbors=5):
|
76 |
+
som_weights = som.get_weights()
|
77 |
+
|
78 |
+
# Assign each datapoint to its nearest node
|
79 |
+
partitions = {idx: [] for idx in np.ndindex(som_size[0], som_size[1])}
|
80 |
+
for sample in cluster_data:
|
81 |
+
x, y = som.winner(sample)
|
82 |
+
partitions[(x, y)].append(sample)
|
83 |
+
|
84 |
+
# Compute the mean distance and std deviation of these partitions
|
85 |
+
mean_cluster = np.zeros(som_size)
|
86 |
+
sigma_cluster = np.zeros(som_size)
|
87 |
+
for idx in partitions:
|
88 |
+
if len(partitions[idx]) > 0:
|
89 |
+
partition_data = np.array(partitions[idx])
|
90 |
+
mean_distance = np.mean(np.linalg.norm(partition_data - som_weights[idx], axis=-1))
|
91 |
+
std_distance = np.std(np.linalg.norm(partition_data - som_weights[idx], axis=-1))
|
92 |
+
else:
|
93 |
+
mean_distance = 0
|
94 |
+
std_distance = 0
|
95 |
+
mean_cluster[idx] = mean_distance
|
96 |
+
sigma_cluster[idx] = std_distance
|
97 |
+
|
98 |
+
return mean_cluster, sigma_cluster
|
99 |
+
|
100 |
+
def train_label(self, labeled_data, labels):
|
101 |
+
"""
|
102 |
+
Train on labeled data to find centroids and compute distances to the labels.
|
103 |
+
"""
|
104 |
+
le = LabelEncoder()
|
105 |
+
encoded_labels = le.fit_transform(labels)
|
106 |
+
unique_labels = np.unique(encoded_labels)
|
107 |
+
|
108 |
+
# Use label spreading to propagate the labels
|
109 |
+
label_prop_model = LabelSpreading(kernel='knn', n_neighbors=5)
|
110 |
+
label_prop_model.fit(labeled_data, encoded_labels)
|
111 |
+
|
112 |
+
# Find the centroids for each label using KMeans
|
113 |
+
kmeans = KMeans(n_clusters=len(unique_labels), random_state=42)
|
114 |
+
kmeans.fit(labeled_data)
|
115 |
+
|
116 |
+
# Store the label centroids and label encodings
|
117 |
+
self.label_centroids = kmeans.cluster_centers_
|
118 |
+
self.label_encodings = le
|
119 |
+
|
120 |
+
def predict(self, data, sigma_factor=1.5):
|
121 |
+
"""
|
122 |
+
Predict the cluster and BMU SOM coordinate for each sample in the data if it's inside the sigma value.
|
123 |
+
Also, predict the label and distance to the center of the label if labels are trained.
|
124 |
+
"""
|
125 |
+
results = []
|
126 |
+
|
127 |
+
for sample in data:
|
128 |
+
min_distance = float('inf')
|
129 |
+
nearest_cluster_idx = None
|
130 |
+
nearest_node = None
|
131 |
+
|
132 |
+
for i, som in self.som_models.items():
|
133 |
+
x, y = som.winner(sample)
|
134 |
+
node = som.get_weights()[x, y]
|
135 |
+
distance = np.linalg.norm(sample - node)
|
136 |
+
|
137 |
+
if distance < min_distance:
|
138 |
+
min_distance = distance
|
139 |
+
nearest_cluster_idx = i
|
140 |
+
nearest_node = (x, y)
|
141 |
+
|
142 |
+
# Check if the nearest node is within the sigma value
|
143 |
+
if min_distance <= self.mean_values[nearest_cluster_idx][nearest_node] * 1.5: # * self.sigma_values[nearest_cluster_idx][nearest_node] * sigma_factor:
|
144 |
+
if hasattr(self, 'label_centroids'):
|
145 |
+
# Predict the label and distance to the center of the label
|
146 |
+
label_idx = self.label_encodings.inverse_transform([nearest_cluster_idx - 1])[0]
|
147 |
+
label_distance = np.linalg.norm(sample - self.label_centroids[label_idx])
|
148 |
+
results.append((nearest_cluster_idx, nearest_node, label_idx, label_distance))
|
149 |
+
else:
|
150 |
+
results.append((nearest_cluster_idx, nearest_node))
|
151 |
+
else:
|
152 |
+
results.append((-1, None)) # Noise
|
153 |
+
|
154 |
+
return results
|
155 |
+
|
156 |
+
def plot_embedding(self, new_data=None, dim_reduction='umap', interactive=False):
|
157 |
+
"""
|
158 |
+
Plot the dataset and SOM grids for each cluster.
|
159 |
+
If new_data is provided, it will be used for plotting instead of the entire dataset.
|
160 |
+
"""
|
161 |
+
|
162 |
+
if self.hdbscan_model is None:
|
163 |
+
raise ValueError("HDBSCAN model not trained yet.")
|
164 |
+
|
165 |
+
if len(self.som_models) == 0:
|
166 |
+
raise ValueError("SOM models not trained yet.")
|
167 |
+
|
168 |
+
if dim_reduction not in ['phate', 'umap']:
|
169 |
+
raise ValueError("Invalid dimensionality reduction method. Use 'phate' or 'umap'.")
|
170 |
+
|
171 |
+
if self.dim_red_op is None or self.embedding is None:
|
172 |
+
n_components = 3
|
173 |
+
if dim_reduction == 'phate':
|
174 |
+
self.dim_red_op = phate.PHATE(n_components=n_components, random_state=42)
|
175 |
+
elif dim_reduction == 'umap':
|
176 |
+
self.dim_red_op = umap.UMAP(n_components=n_components, random_state=42)
|
177 |
+
|
178 |
+
self.embedding = self.dim_red_op.fit_transform(new_data)
|
179 |
+
|
180 |
+
if new_data is not None:
|
181 |
+
new_embedding = self.dim_red_op.transform(new_data)
|
182 |
+
else:
|
183 |
+
new_embedding = self.embedding
|
184 |
+
|
185 |
+
if interactive:
|
186 |
+
fig = sp.make_subplots(rows=1, cols=1, specs=[[{'type': 'scatter3d'}]])
|
187 |
+
else:
|
188 |
+
fig = plt.figure(figsize=(30, 30))
|
189 |
+
ax = fig.add_subplot(111, projection='3d')
|
190 |
+
|
191 |
+
colors = plt.cm.rainbow(np.linspace(0, 1, len(self.som_models) + 1))
|
192 |
+
|
193 |
+
for reindexed_label, som in self.som_models.items():
|
194 |
+
original_label = self.cluster_mapping[reindexed_label]
|
195 |
+
cluster_data = embedding[self.hdbscan_model.labels_ == original_label]
|
196 |
+
som_weights = som.get_weights()
|
197 |
+
|
198 |
+
som_embedding = dim_red_op.transform(som_weights.reshape(-1, dataset.shape[1])).reshape(som_weights.shape[0], som_weights.shape[1], n_components)
|
199 |
+
|
200 |
+
if interactive:
|
201 |
+
# Plot the original data points
|
202 |
+
fig.add_trace(
|
203 |
+
go.Scatter3d(
|
204 |
+
x=cluster_data[:, 0],
|
205 |
+
y=cluster_data[:, 1],
|
206 |
+
z=cluster_data[:, 2],
|
207 |
+
mode='markers',
|
208 |
+
marker=dict(color=colors[reindexed_label], size=1),
|
209 |
+
name=f"Cluster {reindexed_label}"
|
210 |
+
)
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
# Plot the original data points
|
214 |
+
ax.scatter(cluster_data[:, 0], cluster_data[:, 1], cluster_data[:, 2], c=[colors[reindexed_label]], alpha=0.3, s=5, label=f"Cluster {reindexed_label}")
|
215 |
+
|
216 |
+
for x in range(som_embedding.shape[0]):
|
217 |
+
for y in range(som_embedding.shape[1]):
|
218 |
+
if interactive:
|
219 |
+
# Plot the SOM grid
|
220 |
+
fig.add_trace(
|
221 |
+
go.Scatter3d(
|
222 |
+
x=[som_embedding[x, y, 0]],
|
223 |
+
y=[som_embedding[x, y, 1]],
|
224 |
+
z=[som_embedding[x, y, 2]],
|
225 |
+
mode='markers+text',
|
226 |
+
marker=dict(color=colors[reindexed_label], size=3, symbol='circle'),
|
227 |
+
text=[f"{x},{y}"],
|
228 |
+
textposition="top center"
|
229 |
+
)
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
# Plot the SOM grid
|
233 |
+
ax.plot([som_embedding[x, y, 0]], [som_embedding[x, y, 1]], [som_embedding[x, y, 2]], '+', markersize=8, mew=2, zorder=10, c=colors[reindexed_label])
|
234 |
+
|
235 |
+
for i in range(som_embedding.shape[0] - 1):
|
236 |
+
for j in range(som_embedding.shape[1] - 1):
|
237 |
+
if interactive:
|
238 |
+
# Plot the SOM connections
|
239 |
+
fig.add_trace(
|
240 |
+
go.Scatter3d(
|
241 |
+
x=np.append(som_embedding[i:i+2, j, 0], som_embedding[i, j:j+2, 0]),
|
242 |
+
y=np.append(som_embedding[i:i+2, j, 1], som_embedding[i, j:j+2, 1]),
|
243 |
+
z=np.append(som_embedding[i:i+2, j, 2], som_embedding[i, j:j+2, 2]),
|
244 |
+
mode='lines',
|
245 |
+
line=dict(color=colors[reindexed_label], width=2),
|
246 |
+
showlegend=False
|
247 |
+
)
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
# Plot the SOM connections
|
251 |
+
ax.plot(som_embedding[i:i+2, j, 0], som_embedding[i:i+2, j, 1], som_embedding[i:i+2, j, 2], lw=1, c=colors[reindexed_label])
|
252 |
+
ax.plot(som_embedding[i, j:j+2, 0], som_embedding[i, j:j+2, 1], som_embedding[i, j:j+2, 2], lw=1, c=colors[reindexed_label])
|
253 |
+
|
254 |
+
if interactive:
|
255 |
+
# Plot noise
|
256 |
+
noise_data = embedding[self.hdbscan_model.labels_ == -1]
|
257 |
+
if len(noise_data) > 0:
|
258 |
+
fig.add_trace(
|
259 |
+
go.Scatter3d(
|
260 |
+
x=noise_data[:, 0],
|
261 |
+
y=noise_data[:, 1],
|
262 |
+
z=noise_data[:, 2],
|
263 |
+
mode='markers',
|
264 |
+
marker=dict(color="gray", size=1),
|
265 |
+
name="Noise"
|
266 |
+
)
|
267 |
+
)
|
268 |
+
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
|
269 |
+
fig.show()
|
270 |
+
else:
|
271 |
+
# Plot noise
|
272 |
+
noise_data = embedding[self.hdbscan_model.labels_ == -1]
|
273 |
+
if len(noise_data) > 0:
|
274 |
+
ax.scatter(noise_data[:, 0], noise_data[:, 1], noise_data[:, 2], c="gray", label="Noise")
|
275 |
+
ax.legend()
|
276 |
+
plt.show()
|
277 |
+
|
278 |
+
|
279 |
+
def plot_label_heatmap(self):
|
280 |
+
"""
|
281 |
+
Plot a heatmap for each main cluster showing the best label for each coordinate in a single subplot layout.
|
282 |
+
"""
|
283 |
+
if not hasattr(self, 'label_centroids'):
|
284 |
+
raise ValueError("Labels not trained yet.")
|
285 |
+
|
286 |
+
n_labels = len(self.label_centroids)
|
287 |
+
label_colors = plt.cm.rainbow(np.linspace(0, 1, n_labels))
|
288 |
+
n_clusters = len(self.som_models)
|
289 |
+
|
290 |
+
# Create a subplot layout with a heatmap for each main cluster
|
291 |
+
n_rows = int(np.ceil(np.sqrt(n_clusters)))
|
292 |
+
n_cols = n_rows if n_rows * (n_rows - 1) < n_clusters else n_rows - 1
|
293 |
+
fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols * 10, n_rows * 10), squeeze=False)
|
294 |
+
|
295 |
+
for i, (reindexed_label, som) in enumerate(self.som_models.items()):
|
296 |
+
som_weights = som.get_weights()
|
297 |
+
label_map = np.zeros(som_weights.shape[:2], dtype=int)
|
298 |
+
label_distance_map = np.full(som_weights.shape[:2], np.inf)
|
299 |
+
|
300 |
+
for label_idx, label_centroid in enumerate(self.label_centroids):
|
301 |
+
for x in range(som_weights.shape[0]):
|
302 |
+
for y in range(som_weights.shape[1]):
|
303 |
+
node = som_weights[x, y]
|
304 |
+
distance = np.linalg.norm(label_centroid - node)
|
305 |
+
|
306 |
+
if distance < label_distance_map[x, y]:
|
307 |
+
label_distance_map[x, y] = distance
|
308 |
+
label_map[x, y] = label_idx
|
309 |
+
|
310 |
+
row, col = i // n_cols, i % n_cols
|
311 |
+
ax = axes[row, col]
|
312 |
+
cmap = plt.cm.rainbow
|
313 |
+
cmap.set_under(color='white')
|
314 |
+
im = ax.imshow(label_map, cmap=cmap, origin='lower', interpolation='none', vmin=0.5)
|
315 |
+
ax.set_xticks(range(label_map.shape[1]))
|
316 |
+
ax.set_yticks(range(label_map.shape[0]))
|
317 |
+
ax.grid(True, linestyle='-', linewidth=0.5)
|
318 |
+
ax.set_title(f"Label Heatmap for Cluster {reindexed_label}")
|
319 |
+
|
320 |
+
# Add a colorbar for label colors
|
321 |
+
cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
|
322 |
+
cbar = fig.colorbar(im, cax=cbar_ax, ticks=range(n_labels))
|
323 |
+
cbar.ax.set_yticklabels(self.label_encodings.classes_)
|
324 |
+
|
325 |
+
# Adjust the layout to fit everything nicely
|
326 |
+
fig.subplots_adjust(wspace=0.5, hspace=0.5, right=0.9)
|
327 |
+
|
328 |
+
plt.show()
|
329 |
+
|
330 |
+
|
331 |
+
def plot_activation(self, data, filename='prediction_output', start=None, end=None):
|
332 |
+
"""
|
333 |
+
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
|
334 |
+
"""
|
335 |
+
if len(self.som_models) == 0:
|
336 |
+
raise ValueError("SOM models not trained yet.")
|
337 |
+
|
338 |
+
if start is None:
|
339 |
+
start = 0
|
340 |
+
|
341 |
+
if end is None:
|
342 |
+
end = len(data)
|
343 |
+
|
344 |
+
images = []
|
345 |
+
for sample in tqdm(data[start:end], desc="Visualizing prediction output"):
|
346 |
+
prediction = self.predict([sample])[0]
|
347 |
+
if prediction[0] == -1: # Noise
|
348 |
+
continue
|
349 |
+
|
350 |
+
fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
|
351 |
+
fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
|
352 |
+
|
353 |
+
for idx, (som_key, som) in enumerate(self.som_models.items()):
|
354 |
+
ax = axes[idx]
|
355 |
+
activation_map = np.zeros(som._weights.shape[:2])
|
356 |
+
for x in range(som._weights.shape[0]):
|
357 |
+
for y in range(som._weights.shape[1]):
|
358 |
+
activation_map[x, y] = np.linalg.norm(sample - som._weights[x, y])
|
359 |
+
|
360 |
+
winner = som.winner(sample) # Find the BMU for this SOM
|
361 |
+
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
|
362 |
+
|
363 |
+
if som_key == prediction[0]: # Active SOM
|
364 |
+
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
|
365 |
+
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
|
366 |
+
ax.set_title(f"SOM {som_key}", color='blue', fontweight='bold')
|
367 |
+
if hasattr(self, 'label_centroids'):
|
368 |
+
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
|
369 |
+
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
|
370 |
+
else: # Inactive SOM
|
371 |
+
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
|
372 |
+
ax.set_title(f"SOM {som_key}")
|
373 |
+
|
374 |
+
ax.set_xticks(range(activation_map.shape[1]))
|
375 |
+
ax.set_yticks(range(activation_map.shape[0]))
|
376 |
+
ax.grid(True, linestyle='-', linewidth=0.5)
|
377 |
+
|
378 |
+
# Create a colorbar for each frame
|
379 |
+
fig.subplots_adjust(right=0.8)
|
380 |
+
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
|
381 |
+
fig.colorbar(im_active, cax=cbar_ax)
|
382 |
+
|
383 |
+
# Save the plot to a buffer
|
384 |
+
buf = io.BytesIO()
|
385 |
+
plt.savefig(buf, format='png')
|
386 |
+
buf.seek(0)
|
387 |
+
img = imageio.imread(buf)
|
388 |
+
images.append(img)
|
389 |
+
plt.close()
|
390 |
+
|
391 |
+
# Save the images as a GIF
|
392 |
+
imageio.mimsave(f"{filename}.gif", images, duration=500, loop=1)
|
393 |
+
|
394 |
+
# Load the gif
|
395 |
+
gif_file = f"{filename}.gif" # Replace with the path to your GIF file
|
396 |
+
clip = VideoFileClip(gif_file)
|
397 |
+
|
398 |
+
# Convert the gif to mp4
|
399 |
+
mp4_file = f"{filename}.mp4" # Replace with the desired output path
|
400 |
+
clip.write_videofile(mp4_file, codec='libx264')
|
401 |
+
|
402 |
+
# Close the clip to release resources
|
403 |
+
clip.close()
|
404 |
+
|
405 |
+
def save(self, file_path):
|
406 |
+
"""
|
407 |
+
Save the ClusterSOM model to a file.
|
408 |
+
"""
|
409 |
+
model_data = (self.hdbscan_model, self.som_models, self.mean_values, self.sigma_values, self.cluster_mapping)
|
410 |
+
if hasattr(self, 'label_centroids'):
|
411 |
+
model_data += (self.label_centroids, self.label_encodings)
|
412 |
+
|
413 |
+
with open(file_path, "wb") as f:
|
414 |
+
pickle.dump(model_data, f)
|
415 |
+
|
416 |
+
def load(self, file_path):
|
417 |
+
"""
|
418 |
+
Load a ClusterSOM model from a file.
|
419 |
+
"""
|
420 |
+
with open(file_path, "rb") as f:
|
421 |
+
model_data = pickle.load(f)
|
422 |
+
|
423 |
+
self.hdbscan_model, self.som_models, self.mean_values, self.sigma_values, self.cluster_mapping = model_data[:5]
|
424 |
+
if len(model_data) > 5:
|
425 |
+
self.label_centroids, self.label_encodings = model_data[5:]
|
ml_inference.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from phate import PHATEAE
|
3 |
+
from funcs.som import ClusterSOM
|
4 |
+
|
5 |
+
from funcs.dataloader import BaseDataset2, read_json_files
|
6 |
+
|
7 |
+
|
8 |
+
DEVICE = torch.device("cpu")
|
9 |
+
|
10 |
+
reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
|
11 |
+
reducer10d.load('models/r10d_2.pth')
|
12 |
+
|
13 |
+
cluster_som = ClusterSOM()
|
14 |
+
cluster_som.load("models/cluster_som2.pkl")
|
15 |
+
|
16 |
+
train_x, train_y = read_json_files('output.json')
|
17 |
+
# Convert tensors to numpy arrays if necessary
|
18 |
+
if isinstance(train_x, torch.Tensor):
|
19 |
+
train_x = train_x.numpy()
|
20 |
+
if isinstance(train_y, torch.Tensor):
|
21 |
+
train_y = train_y.numpy()
|
22 |
+
|
23 |
+
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
|
24 |
+
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
|
25 |
+
|
26 |
+
#compute the 10 dimensional embeding vector
|
27 |
+
embedding10d = reducer10d.transform(data)
|
28 |
+
|
29 |
+
prediction = cluster_som.predict(embedding10d)
|
30 |
+
cluster_som.plot_activation(embedding10d)
|
models/cluster_som2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5282b68cae29910b6b38c03e0e7e9ab528fb67ef689812d6b02012950303c2d6
|
3 |
+
size 8367290
|
models/r10d_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c8272bde6d372c90002f6d6afe39584255a99371bdbf18c54f5f574725d9902
|
3 |
+
size 13100259
|
requirements.txt
CHANGED
@@ -3,66 +3,121 @@ aiohttp==3.8.4
|
|
3 |
aiosignal==1.3.1
|
4 |
altair==4.2.2
|
5 |
anyio==3.6.2
|
|
|
|
|
6 |
async-timeout==4.0.2
|
7 |
attrs==23.1.0
|
|
|
|
|
8 |
certifi==2022.12.7
|
9 |
charset-normalizer==3.1.0
|
10 |
click==8.1.3
|
11 |
contourpy==1.0.7
|
12 |
cycler==0.11.0
|
|
|
|
|
|
|
13 |
entrypoints==0.4
|
|
|
14 |
fastapi==0.95.1
|
15 |
ffmpy==0.3.0
|
16 |
filelock==3.12.0
|
17 |
fonttools==4.39.3
|
18 |
frozenlist==1.3.3
|
19 |
fsspec==2023.4.0
|
20 |
-
|
|
|
21 |
gradio_client==0.1.4
|
|
|
22 |
h11==0.14.0
|
|
|
23 |
httpcore==0.17.0
|
24 |
httpx==0.24.0
|
25 |
huggingface-hub==0.14.1
|
26 |
idna==3.4
|
|
|
|
|
|
|
27 |
importlib-resources==5.12.0
|
|
|
|
|
28 |
Jinja2==3.1.2
|
|
|
29 |
jsonschema==4.17.3
|
30 |
kiwisolver==1.4.4
|
|
|
31 |
linkify-it-py==2.0.2
|
|
|
32 |
markdown-it-py==2.2.0
|
33 |
MarkupSafe==2.1.2
|
34 |
matplotlib==3.7.1
|
|
|
35 |
mdit-py-plugins==0.3.3
|
36 |
mdurl==0.1.2
|
|
|
|
|
|
|
37 |
multidict==6.0.4
|
|
|
|
|
|
|
38 |
numpy==1.24.3
|
39 |
orjson==3.8.11
|
40 |
packaging==23.1
|
41 |
pandas==2.0.1
|
|
|
|
|
|
|
|
|
42 |
Pillow==9.5.0
|
43 |
pkgutil_resolve_name==1.3.10
|
|
|
|
|
|
|
|
|
|
|
44 |
pydantic==1.10.7
|
|
|
45 |
pydub==0.25.1
|
46 |
Pygments==2.15.1
|
|
|
|
|
47 |
pyparsing==3.0.9
|
48 |
pyrsistent==0.19.3
|
49 |
python-dateutil==2.8.2
|
50 |
python-multipart==0.0.6
|
51 |
pytz==2023.3
|
|
|
52 |
PyYAML==6.0
|
53 |
-
requests==2.
|
54 |
-
|
|
|
|
|
|
|
55 |
semantic-version==2.10.0
|
56 |
six==1.16.0
|
57 |
sniffio==1.3.0
|
|
|
58 |
starlette==0.26.1
|
|
|
|
|
|
|
|
|
|
|
59 |
toolz==0.12.0
|
|
|
|
|
|
|
60 |
tqdm==4.65.0
|
|
|
61 |
typing_extensions==4.5.0
|
62 |
tzdata==2023.3
|
63 |
uc-micro-py==1.0.2
|
64 |
-
|
|
|
65 |
uvicorn==0.22.0
|
|
|
66 |
websockets==11.0.2
|
|
|
67 |
yarl==1.9.2
|
68 |
zipp==3.15.0
|
|
|
3 |
aiosignal==1.3.1
|
4 |
altair==4.2.2
|
5 |
anyio==3.6.2
|
6 |
+
appnope==0.1.3
|
7 |
+
asttokens==2.2.1
|
8 |
async-timeout==4.0.2
|
9 |
attrs==23.1.0
|
10 |
+
babyplots==1.7.0
|
11 |
+
backcall==0.2.0
|
12 |
certifi==2022.12.7
|
13 |
charset-normalizer==3.1.0
|
14 |
click==8.1.3
|
15 |
contourpy==1.0.7
|
16 |
cycler==0.11.0
|
17 |
+
Cython==0.29.34
|
18 |
+
decorator==4.4.2
|
19 |
+
Deprecated==1.2.13
|
20 |
entrypoints==0.4
|
21 |
+
executing==1.2.0
|
22 |
fastapi==0.95.1
|
23 |
ffmpy==0.3.0
|
24 |
filelock==3.12.0
|
25 |
fonttools==4.39.3
|
26 |
frozenlist==1.3.3
|
27 |
fsspec==2023.4.0
|
28 |
+
future==0.18.3
|
29 |
+
gradio==3.28.3
|
30 |
gradio_client==0.1.4
|
31 |
+
graphtools==1.5.3
|
32 |
h11==0.14.0
|
33 |
+
hdbscan==0.8.29
|
34 |
httpcore==0.17.0
|
35 |
httpx==0.24.0
|
36 |
huggingface-hub==0.14.1
|
37 |
idna==3.4
|
38 |
+
imageio==2.28.1
|
39 |
+
imageio-ffmpeg==0.4.8
|
40 |
+
importlib-metadata==6.6.0
|
41 |
importlib-resources==5.12.0
|
42 |
+
ipython==8.12.2
|
43 |
+
jedi==0.18.2
|
44 |
Jinja2==3.1.2
|
45 |
+
joblib==1.2.0
|
46 |
jsonschema==4.17.3
|
47 |
kiwisolver==1.4.4
|
48 |
+
lazy_loader==0.2
|
49 |
linkify-it-py==2.0.2
|
50 |
+
llvmlite==0.40.0
|
51 |
markdown-it-py==2.2.0
|
52 |
MarkupSafe==2.1.2
|
53 |
matplotlib==3.7.1
|
54 |
+
matplotlib-inline==0.1.6
|
55 |
mdit-py-plugins==0.3.3
|
56 |
mdurl==0.1.2
|
57 |
+
MiniSom==2.3.1
|
58 |
+
moviepy==1.0.3
|
59 |
+
mpmath==1.3.0
|
60 |
multidict==6.0.4
|
61 |
+
networkx==3.1
|
62 |
+
numba==0.57.0
|
63 |
+
numexpr==2.8.4
|
64 |
numpy==1.24.3
|
65 |
orjson==3.8.11
|
66 |
packaging==23.1
|
67 |
pandas==2.0.1
|
68 |
+
parso==0.8.3
|
69 |
+
pexpect==4.8.0
|
70 |
+
phate @ git+https://github.com/metric-space-ai/phate.git@5fcb5bc29f6634391b0ad3831544b09a23123122
|
71 |
+
pickleshare==0.7.5
|
72 |
Pillow==9.5.0
|
73 |
pkgutil_resolve_name==1.3.10
|
74 |
+
plotly==5.14.1
|
75 |
+
proglog==0.1.10
|
76 |
+
prompt-toolkit==3.0.38
|
77 |
+
ptyprocess==0.7.0
|
78 |
+
pure-eval==0.2.2
|
79 |
pydantic==1.10.7
|
80 |
+
pydiffmap==0.2.0.1
|
81 |
pydub==0.25.1
|
82 |
Pygments==2.15.1
|
83 |
+
PyGSP==0.5.1
|
84 |
+
pynndescent==0.5.10
|
85 |
pyparsing==3.0.9
|
86 |
pyrsistent==0.19.3
|
87 |
python-dateutil==2.8.2
|
88 |
python-multipart==0.0.6
|
89 |
pytz==2023.3
|
90 |
+
PyWavelets==1.4.1
|
91 |
PyYAML==6.0
|
92 |
+
requests==2.30.0
|
93 |
+
scikit-image==0.20.0
|
94 |
+
scikit-learn==1.2.2
|
95 |
+
scipy==1.9.1
|
96 |
+
seaborn==0.12.2
|
97 |
semantic-version==2.10.0
|
98 |
six==1.16.0
|
99 |
sniffio==1.3.0
|
100 |
+
stack-data==0.6.2
|
101 |
starlette==0.26.1
|
102 |
+
sympy==1.12
|
103 |
+
tasklogger==1.2.0
|
104 |
+
tenacity==8.2.2
|
105 |
+
threadpoolctl==3.1.0
|
106 |
+
tifffile==2023.4.12
|
107 |
toolz==0.12.0
|
108 |
+
torch==2.0.1
|
109 |
+
torchaudio==2.0.2
|
110 |
+
torchvision==0.15.2
|
111 |
tqdm==4.65.0
|
112 |
+
traitlets==5.9.0
|
113 |
typing_extensions==4.5.0
|
114 |
tzdata==2023.3
|
115 |
uc-micro-py==1.0.2
|
116 |
+
umap-learn==0.5.3
|
117 |
+
urllib3==2.0.2
|
118 |
uvicorn==0.22.0
|
119 |
+
wcwidth==0.2.6
|
120 |
websockets==11.0.2
|
121 |
+
wrapt==1.15.0
|
122 |
yarl==1.9.2
|
123 |
zipp==3.15.0
|
test_plot.py
CHANGED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
plt.style.use('ggplot')
|
7 |
+
|
8 |
+
def plot_overlay_data_from_json(json_file, sensors, use_precise_timestamp=False, slice_select=1):
|
9 |
+
# Read the JSON file
|
10 |
+
with open(json_file, "r") as f:
|
11 |
+
slices = json.load(f)
|
12 |
+
|
13 |
+
# Set up the colormap
|
14 |
+
cmap = plt.get_cmap('viridis')
|
15 |
+
|
16 |
+
# Create subplots for each sensor
|
17 |
+
fig, axs = plt.subplots(len(sensors), 1, figsize=(12, 2 * len(sensors)), sharex=True)
|
18 |
+
|
19 |
+
for idx, sensor in enumerate(sensors):
|
20 |
+
# Plot the overlay of the slices
|
21 |
+
for slice_idx, slice_dict in enumerate(slices):
|
22 |
+
slice_length = len(slice_dict[sensor])
|
23 |
+
|
24 |
+
# Create timestamp array starting from 0 for each slice
|
25 |
+
slice_timestamps = [20 * i for i in range(slice_length)]
|
26 |
+
sensor_data = slice_dict[sensor]
|
27 |
+
|
28 |
+
data = pd.DataFrame({sensor: sensor_data}, index=slice_timestamps)
|
29 |
+
color = cmap(slice_idx / len(slices))
|
30 |
+
|
31 |
+
axs[idx].plot(data[sensor], color=color, label=f'Slice {slice_idx + 1}')
|
32 |
+
|
33 |
+
axs[idx].set_ylabel(sensor)
|
34 |
+
|
35 |
+
axs[-1].set_xlabel("Timestamp")
|
36 |
+
axs[0].legend()
|
37 |
+
|
38 |
+
return fig
|
39 |
+
|
40 |
+
plot_overlay_data_from_json('output.json', ["GZ1", "GZ2", "GZ3", "GZ4"], 4)
|