arcan3 commited on
Commit
5124a31
1 Parent(s): 611742b
Files changed (3) hide show
  1. app.py +5 -4
  2. funcs/ml_inference.py +1 -1
  3. funcs/som.py +1 -9
app.py CHANGED
@@ -19,7 +19,7 @@ cluster_som = ClusterSOM()
19
  cluster_som.load("models/cluster_som2.pkl")
20
 
21
  # ml inference
22
- def get_som_mp4(file, slice_select=1, reducer=reducer10d, cluster=cluster_som):
23
 
24
  try:
25
  train_x, train_y = read_json_files(file)
@@ -77,7 +77,7 @@ with gr.Blocks(title='Cabasus') as cabasus_sensor:
77
  repeat_process = gr.Button('Restart process', visible=False)
78
  with gr.Row():
79
  leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
80
- slice_slider = gr.Slider(minimum=1, maximum=300, label='Current slice', step=1)
81
  with gr.Row():
82
  plot_box_leg = gr.Plot(label="Filtered Signal Plot")
83
  plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
@@ -85,8 +85,9 @@ with gr.Blocks(title='Cabasus') as cabasus_sensor:
85
  with gr.Row():
86
  plot_slice_leg = gr.Plot(label="Sliced Signal Plot")
87
  get_all_slice = gr.Plot(label="Real Signal Plot")
88
-
89
- som_create = gr.Button('generate som')
 
90
  som_figures = gr.Plot(label="som activations")
91
  with gr.Row():
92
  slice_json_box = gr.File(label='Slice json file')
 
19
  cluster_som.load("models/cluster_som2.pkl")
20
 
21
  # ml inference
22
+ def get_som_mp4(file, slice_select, reducer=reducer10d, cluster=cluster_som):
23
 
24
  try:
25
  train_x, train_y = read_json_files(file)
 
77
  repeat_process = gr.Button('Restart process', visible=False)
78
  with gr.Row():
79
  leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
80
+
81
  with gr.Row():
82
  plot_box_leg = gr.Plot(label="Filtered Signal Plot")
83
  plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
 
85
  with gr.Row():
86
  plot_slice_leg = gr.Plot(label="Sliced Signal Plot")
87
  get_all_slice = gr.Plot(label="Real Signal Plot")
88
+ with gr.Row():
89
+ som_create = gr.Button('generate som')
90
+ slice_slider = gr.Slider(minimum=1, maximum=300, label='Current slice', step=1)
91
  som_figures = gr.Plot(label="som activations")
92
  with gr.Row():
93
  slice_json_box = gr.File(label='Slice json file')
funcs/ml_inference.py CHANGED
@@ -1,7 +1,7 @@
1
  import torch
2
  from funcs.dataloader import BaseDataset2, read_json_files
3
 
4
- def get_som_mp4(file, reducer10d, cluster_som, slice_select=1):
5
 
6
  try:
7
  train_x, train_y = read_json_files(file)
 
1
  import torch
2
  from funcs.dataloader import BaseDataset2, read_json_files
3
 
4
+ def get_som_mp4(file, reducer10d, cluster_som, slice_select):
5
 
6
  try:
7
  train_x, train_y = read_json_files(file)
funcs/som.py CHANGED
@@ -428,7 +428,7 @@ class ClusterSOM:
428
  self.label_centroids, self.label_encodings = model_data[5:]
429
 
430
 
431
- def plot_activation_v2(self, data, slice_select=1):
432
  """
433
  Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
434
  """
@@ -465,14 +465,6 @@ class ClusterSOM:
465
  ax.set_yticks(range(activation_map.shape[0]))
466
  ax.grid(True, linestyle='-', linewidth=0.5)
467
 
468
- # Create a colorbar for each frame
469
- # fig.subplots_adjust(right=0.8)
470
- # cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
471
-
472
  plt.tight_layout()
473
- # try:
474
- # fig.colorbar(im_active, cax=cbar_ax)
475
- # except:
476
- # pass
477
 
478
  return fig
 
428
  self.label_centroids, self.label_encodings = model_data[5:]
429
 
430
 
431
+ def plot_activation_v2(self, data, slice_select):
432
  """
433
  Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
434
  """
 
465
  ax.set_yticks(range(activation_map.shape[0]))
466
  ax.grid(True, linestyle='-', linewidth=0.5)
467
 
 
 
 
 
468
  plt.tight_layout()
 
 
 
 
469
 
470
  return fig