Spaces:
Build error
Build error
arcan3
commited on
Commit
·
715f3b0
1
Parent(s):
29afbe3
added plot colors and the gap size issue
Browse files- app.py +1 -3
- funcs/plot_func.py +4 -2
- funcs/processor.py +1 -5
app.py
CHANGED
@@ -19,12 +19,10 @@ with gr.Blocks(title='Cabasus') as cabasus_sensor:
|
|
19 |
repeat_process = gr.Button('Restart process')
|
20 |
with gr.Row():
|
21 |
leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
|
|
|
22 |
with gr.Row():
|
23 |
plot_box_leg = gr.Plot(label="Filtered Signal Plot")
|
24 |
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
|
25 |
-
|
26 |
-
with gr.Row():
|
27 |
-
slice_slider = gr.Slider(minimum=1, maximum=300, label='Current slice', step=1)
|
28 |
|
29 |
with gr.Row():
|
30 |
plot_slice_leg = gr.Plot(label="Sliced Signal Plot")
|
|
|
19 |
repeat_process = gr.Button('Restart process')
|
20 |
with gr.Row():
|
21 |
leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
|
22 |
+
slice_slider = gr.Slider(minimum=1, maximum=300, label='Current slice', step=1)
|
23 |
with gr.Row():
|
24 |
plot_box_leg = gr.Plot(label="Filtered Signal Plot")
|
25 |
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
|
|
|
|
|
|
|
26 |
|
27 |
with gr.Row():
|
28 |
plot_slice_leg = gr.Plot(label="Sliced Signal Plot")
|
funcs/plot_func.py
CHANGED
@@ -39,7 +39,7 @@ def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
|
|
39 |
|
40 |
# Plot the sensor data
|
41 |
fig, ax = plt.subplots(figsize=(12, 6))
|
42 |
-
ax = plt.plot(data['time'].to_list(), data[sensor].to_list())
|
43 |
|
44 |
df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
|
45 |
y = [np.NaN]*((int(slice_select)-1)*len(df_temp[sensor].to_list())) + df_temp[sensor].to_list() + [np.NaN]*((len(slices) - int(slice_select))*len(df_temp[sensor].to_list()))
|
@@ -152,8 +152,10 @@ def plot_other_sensor_with_same_timestamp(json_file, sensor, slice_select):
|
|
152 |
# Create a DataFrame with the sensor data
|
153 |
data = pd.DataFrame({'data': sensor_data, 'sensor': slice_item, 'time': timestamps})
|
154 |
|
|
|
|
|
155 |
fig, ax = plt.subplots(figsize=(12, 6))
|
156 |
-
ax = sns.lineplot(data, x='time', y='data', hue='sensor')
|
157 |
|
158 |
plt.xlabel("Timestamp")
|
159 |
plt.ylabel(sensor)
|
|
|
39 |
|
40 |
# Plot the sensor data
|
41 |
fig, ax = plt.subplots(figsize=(12, 6))
|
42 |
+
ax = plt.plot(data['time'].to_list(), data[sensor].to_list(), '-b')
|
43 |
|
44 |
df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
|
45 |
y = [np.NaN]*((int(slice_select)-1)*len(df_temp[sensor].to_list())) + df_temp[sensor].to_list() + [np.NaN]*((len(slices) - int(slice_select))*len(df_temp[sensor].to_list()))
|
|
|
152 |
# Create a DataFrame with the sensor data
|
153 |
data = pd.DataFrame({'data': sensor_data, 'sensor': slice_item, 'time': timestamps})
|
154 |
|
155 |
+
sensor_unique = sorted(list(data.sensor.unique()), reverse=True)
|
156 |
+
|
157 |
fig, ax = plt.subplots(figsize=(12, 6))
|
158 |
+
ax = sns.lineplot(data, x='time', y='data', hue='sensor', hue_order=sensor_unique)
|
159 |
|
160 |
plt.xlabel("Timestamp")
|
161 |
plt.ylabel(sensor)
|
funcs/processor.py
CHANGED
@@ -69,7 +69,7 @@ def process_data(input_file, slice_size=64, min_slice_size=16, sample_rate=20, w
|
|
69 |
if not no_significant_change_index.empty:
|
70 |
# Save the data up to the point where no significant change appears in all channels
|
71 |
data = data.loc[:no_significant_change_index[0]]
|
72 |
-
return None, None, f'Warning:
|
73 |
|
74 |
# Save the resulting DataFrame to a new file
|
75 |
data.to_csv('output.csv', sep=";", na_rep="NaN", float_format="%.0f")
|
@@ -80,8 +80,4 @@ def process_data(input_file, slice_size=64, min_slice_size=16, sample_rate=20, w
|
|
80 |
sensor_fig, slice_fig, get_all_slice = plot_sensor_data_from_json(file, "GZ1")
|
81 |
overlay_fig = plot_overlay_data_from_json(file, ["GZ1", "GZ2", "GZ3", "GZ4"], use_precise_timestamp=True)
|
82 |
|
83 |
-
# plot all the curves from the timestep
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
return 'output.csv', file, f'{len_}', sensor_fig, overlay_fig, gr.Slider.update(interactive=True, maximum=len_, minimum=1, value=1), slice_fig, get_all_slice
|
|
|
69 |
if not no_significant_change_index.empty:
|
70 |
# Save the data up to the point where no significant change appears in all channels
|
71 |
data = data.loc[:no_significant_change_index[0]]
|
72 |
+
return None, None, f'Warning: Significantly shortened > check the recordings', None, None, None, None, None
|
73 |
|
74 |
# Save the resulting DataFrame to a new file
|
75 |
data.to_csv('output.csv', sep=";", na_rep="NaN", float_format="%.0f")
|
|
|
80 |
sensor_fig, slice_fig, get_all_slice = plot_sensor_data_from_json(file, "GZ1")
|
81 |
overlay_fig = plot_overlay_data_from_json(file, ["GZ1", "GZ2", "GZ3", "GZ4"], use_precise_timestamp=True)
|
82 |
|
|
|
|
|
|
|
|
|
83 |
return 'output.csv', file, f'{len_}', sensor_fig, overlay_fig, gr.Slider.update(interactive=True, maximum=len_, minimum=1, value=1), slice_fig, get_all_slice
|