import torch from funcs.dataloader import BaseDataset2, read_json_files def get_som_mp4(file, reducer10d, cluster_som, slice_select): try: train_x, train_y = read_json_files(file) except: train_x, train_y = read_json_files(file.name) # Convert tensors to numpy arrays if necessary if isinstance(train_x, torch.Tensor): train_x = train_x.numpy() if isinstance(train_y, torch.Tensor): train_y = train_y.numpy() # load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y) #compute the 10 dimensional embeding vector embedding10d = reducer10d.transform(data) # prediction = cluster_som.predict(embedding10d) fig = cluster_som.plot_activation_v2(embedding10d, slice_select) return fig