Spaces:
Runtime error
Runtime error
import random | |
import spaces | |
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler | |
from peft import PeftModel | |
import os | |
from huggingface_hub import snapshot_download | |
huggingface_token = os.getenv("HUGGINFACE_TOKEN") | |
model_path = snapshot_download( | |
repo_id="stabilityai/stable-diffusion-3-medium", | |
revision="refs/pr/26", | |
repo_type="model", | |
ignore_patterns=["*.md", "*..gitattributes"], | |
local_dir="stable-diffusion-3-medium", | |
token=huggingface_token, # type a new token-id. | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None | |
transformer = SD3Transformer2DModel.from_pretrained( | |
model_path, | |
subfolder="transformer", | |
torch_dtype=torch.float16, | |
) | |
transformer = PeftModel.from_pretrained(transformer, "jasperai/flash-sd3") | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = StableDiffusion3Pipeline.from_pretrained( | |
model_path, | |
transformer=transformer, | |
torch_dtype=torch.float16, | |
text_encoder_3=None, | |
tokenizer_3=None, | |
) | |
pipe = pipe.to(device) | |
else: | |
pipe = StableDiffusion3Pipeline.from_pretrained( | |
model_path, | |
transformer=transformer, | |
torch_dtype=torch.float16, | |
text_encoder_3=None, | |
tokenizer_3=None, | |
) | |
pipe = pipe.to(device) | |
pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained( | |
model_path, | |
subfolder="scheduler", | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
NUM_INFERENCE_STEPS = 4 | |
def infer(prompt, seed, randomize_seed, guidance_scale, num_inference_steps, negative_prompt, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
negative_prompt=negative_prompt | |
).images[0] | |
return image | |
examples = [ | |
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.", | |
'a 3D render of a wizard raccoon holding a sign saying "SD 3" with a magic wand.', | |
"A panda reading a book in a lush forest.", | |
"A raccoon trapped inside a glass jar full of colorful candies, the background is steamy with vivid colors", | |
"Pirate ship sailing on a sea with the milky way galaxy in the sky and purple glow lights", | |
"a cute cartoon fluffy rabbit pilot walking on a military aircraft carrier, 8k, cinematic", | |
"A 3d render of a futuristic city with a giant robot in the middle full of neon lights, pink and blue colors", | |
"A close up of an old elderly man with green eyes looking straight at the camera", | |
"photo of a huge red cat with green eyes sitting on a cloud in the sky, looking at the camera" | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 512px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css, theme="Nymbo/Alyx_Theme") as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
f""" | |
# ⚡ SD3 Flash ⚡ | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=3.0, | |
step=0.1, | |
value=1.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=4, | |
maximum=8, | |
step=1, | |
value=4, | |
) | |
examples = gr.Examples(examples=examples, inputs=[prompt], cache_examples=False) | |
gr.Markdown("") | |
gr.on( | |
[run_button.click, seed.change, randomize_seed.change, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps, negative_prompt], | |
outputs=[result], | |
# show_progress="minimal", | |
#show_api=False, | |
#trigger_mode="always_last", | |
) | |
demo.queue().launch(show_api=True) | |