Spaces:
Build error
Build error
File size: 10,313 Bytes
8f87579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Linear Separability (LS)."""
from collections import defaultdict
import numpy as np
import sklearn.svm
import tensorflow as tf
import dnnlib.tflib as tflib
from metrics import metric_base
from training import misc
#----------------------------------------------------------------------------
classifier_urls = [
'https://drive.google.com/uc?id=1Q5-AI6TwWhCVM7Muu4tBM7rp5nG_gmCX', # celebahq-classifier-00-male.pkl
'https://drive.google.com/uc?id=1Q5c6HE__ReW2W8qYAXpao68V1ryuisGo', # celebahq-classifier-01-smiling.pkl
'https://drive.google.com/uc?id=1Q7738mgWTljPOJQrZtSMLxzShEhrvVsU', # celebahq-classifier-02-attractive.pkl
'https://drive.google.com/uc?id=1QBv2Mxe7ZLvOv1YBTLq-T4DS3HjmXV0o', # celebahq-classifier-03-wavy-hair.pkl
'https://drive.google.com/uc?id=1QIvKTrkYpUrdA45nf7pspwAqXDwWOLhV', # celebahq-classifier-04-young.pkl
'https://drive.google.com/uc?id=1QJPH5rW7MbIjFUdZT7vRYfyUjNYDl4_L', # celebahq-classifier-05-5-o-clock-shadow.pkl
'https://drive.google.com/uc?id=1QPZXSYf6cptQnApWS_T83sqFMun3rULY', # celebahq-classifier-06-arched-eyebrows.pkl
'https://drive.google.com/uc?id=1QPgoAZRqINXk_PFoQ6NwMmiJfxc5d2Pg', # celebahq-classifier-07-bags-under-eyes.pkl
'https://drive.google.com/uc?id=1QQPQgxgI6wrMWNyxFyTLSgMVZmRr1oO7', # celebahq-classifier-08-bald.pkl
'https://drive.google.com/uc?id=1QcSphAmV62UrCIqhMGgcIlZfoe8hfWaF', # celebahq-classifier-09-bangs.pkl
'https://drive.google.com/uc?id=1QdWTVwljClTFrrrcZnPuPOR4mEuz7jGh', # celebahq-classifier-10-big-lips.pkl
'https://drive.google.com/uc?id=1QgvEWEtr2mS4yj1b_Y3WKe6cLWL3LYmK', # celebahq-classifier-11-big-nose.pkl
'https://drive.google.com/uc?id=1QidfMk9FOKgmUUIziTCeo8t-kTGwcT18', # celebahq-classifier-12-black-hair.pkl
'https://drive.google.com/uc?id=1QthrJt-wY31GPtV8SbnZQZ0_UEdhasHO', # celebahq-classifier-13-blond-hair.pkl
'https://drive.google.com/uc?id=1QvCAkXxdYT4sIwCzYDnCL9Nb5TDYUxGW', # celebahq-classifier-14-blurry.pkl
'https://drive.google.com/uc?id=1QvLWuwSuWI9Ln8cpxSGHIciUsnmaw8L0', # celebahq-classifier-15-brown-hair.pkl
'https://drive.google.com/uc?id=1QxW6THPI2fqDoiFEMaV6pWWHhKI_OoA7', # celebahq-classifier-16-bushy-eyebrows.pkl
'https://drive.google.com/uc?id=1R71xKw8oTW2IHyqmRDChhTBkW9wq4N9v', # celebahq-classifier-17-chubby.pkl
'https://drive.google.com/uc?id=1RDn_fiLfEGbTc7JjazRXuAxJpr-4Pl67', # celebahq-classifier-18-double-chin.pkl
'https://drive.google.com/uc?id=1RGBuwXbaz5052bM4VFvaSJaqNvVM4_cI', # celebahq-classifier-19-eyeglasses.pkl
'https://drive.google.com/uc?id=1RIxOiWxDpUwhB-9HzDkbkLegkd7euRU9', # celebahq-classifier-20-goatee.pkl
'https://drive.google.com/uc?id=1RPaNiEnJODdr-fwXhUFdoSQLFFZC7rC-', # celebahq-classifier-21-gray-hair.pkl
'https://drive.google.com/uc?id=1RQH8lPSwOI2K_9XQCZ2Ktz7xm46o80ep', # celebahq-classifier-22-heavy-makeup.pkl
'https://drive.google.com/uc?id=1RXZM61xCzlwUZKq-X7QhxOg0D2telPow', # celebahq-classifier-23-high-cheekbones.pkl
'https://drive.google.com/uc?id=1RgASVHW8EWMyOCiRb5fsUijFu-HfxONM', # celebahq-classifier-24-mouth-slightly-open.pkl
'https://drive.google.com/uc?id=1RkC8JLqLosWMaRne3DARRgolhbtg_wnr', # celebahq-classifier-25-mustache.pkl
'https://drive.google.com/uc?id=1RqtbtFT2EuwpGTqsTYJDyXdnDsFCPtLO', # celebahq-classifier-26-narrow-eyes.pkl
'https://drive.google.com/uc?id=1Rs7hU-re8bBMeRHR-fKgMbjPh-RIbrsh', # celebahq-classifier-27-no-beard.pkl
'https://drive.google.com/uc?id=1RynDJQWdGOAGffmkPVCrLJqy_fciPF9E', # celebahq-classifier-28-oval-face.pkl
'https://drive.google.com/uc?id=1S0TZ_Hdv5cb06NDaCD8NqVfKy7MuXZsN', # celebahq-classifier-29-pale-skin.pkl
'https://drive.google.com/uc?id=1S3JPhZH2B4gVZZYCWkxoRP11q09PjCkA', # celebahq-classifier-30-pointy-nose.pkl
'https://drive.google.com/uc?id=1S3pQuUz-Jiywq_euhsfezWfGkfzLZ87W', # celebahq-classifier-31-receding-hairline.pkl
'https://drive.google.com/uc?id=1S6nyIl_SEI3M4l748xEdTV2vymB_-lrY', # celebahq-classifier-32-rosy-cheeks.pkl
'https://drive.google.com/uc?id=1S9P5WCi3GYIBPVYiPTWygrYIUSIKGxbU', # celebahq-classifier-33-sideburns.pkl
'https://drive.google.com/uc?id=1SANviG-pp08n7AFpE9wrARzozPIlbfCH', # celebahq-classifier-34-straight-hair.pkl
'https://drive.google.com/uc?id=1SArgyMl6_z7P7coAuArqUC2zbmckecEY', # celebahq-classifier-35-wearing-earrings.pkl
'https://drive.google.com/uc?id=1SC5JjS5J-J4zXFO9Vk2ZU2DT82TZUza_', # celebahq-classifier-36-wearing-hat.pkl
'https://drive.google.com/uc?id=1SDAQWz03HGiu0MSOKyn7gvrp3wdIGoj-', # celebahq-classifier-37-wearing-lipstick.pkl
'https://drive.google.com/uc?id=1SEtrVK-TQUC0XeGkBE9y7L8VXfbchyKX', # celebahq-classifier-38-wearing-necklace.pkl
'https://drive.google.com/uc?id=1SF_mJIdyGINXoV-I6IAxHB_k5dxiF6M-', # celebahq-classifier-39-wearing-necktie.pkl
]
#----------------------------------------------------------------------------
def prob_normalize(p):
p = np.asarray(p).astype(np.float32)
assert len(p.shape) == 2
return p / np.sum(p)
def mutual_information(p):
p = prob_normalize(p)
px = np.sum(p, axis=1)
py = np.sum(p, axis=0)
result = 0.0
for x in range(p.shape[0]):
p_x = px[x]
for y in range(p.shape[1]):
p_xy = p[x][y]
p_y = py[y]
if p_xy > 0.0:
result += p_xy * np.log2(p_xy / (p_x * p_y)) # get bits as output
return result
def entropy(p):
p = prob_normalize(p)
result = 0.0
for x in range(p.shape[0]):
for y in range(p.shape[1]):
p_xy = p[x][y]
if p_xy > 0.0:
result -= p_xy * np.log2(p_xy)
return result
def conditional_entropy(p):
# H(Y|X) where X corresponds to axis 0, Y to axis 1
# i.e., How many bits of additional information are needed to where we are on axis 1 if we know where we are on axis 0?
p = prob_normalize(p)
y = np.sum(p, axis=0, keepdims=True) # marginalize to calculate H(Y)
return max(0.0, entropy(y) - mutual_information(p)) # can slip just below 0 due to FP inaccuracies, clean those up.
#----------------------------------------------------------------------------
class LS(metric_base.MetricBase):
def __init__(self, num_samples, num_keep, attrib_indices, minibatch_per_gpu, **kwargs):
assert num_keep <= num_samples
super().__init__(**kwargs)
self.num_samples = num_samples
self.num_keep = num_keep
self.attrib_indices = attrib_indices
self.minibatch_per_gpu = minibatch_per_gpu
def _evaluate(self, Gs, num_gpus):
minibatch_size = num_gpus * self.minibatch_per_gpu
# Construct TensorFlow graph for each GPU.
result_expr = []
for gpu_idx in range(num_gpus):
with tf.device('/gpu:%d' % gpu_idx):
Gs_clone = Gs.clone()
# Generate images.
latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
dlatents = Gs_clone.components.mapping.get_output_for(latents, None, is_validation=True)
images = Gs_clone.components.synthesis.get_output_for(dlatents, is_validation=True, randomize_noise=True)
# Downsample to 256x256. The attribute classifiers were built for 256x256.
if images.shape[2] > 256:
factor = images.shape[2] // 256
images = tf.reshape(images, [-1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor])
images = tf.reduce_mean(images, axis=[3, 5])
# Run classifier for each attribute.
result_dict = dict(latents=latents, dlatents=dlatents[:,-1])
for attrib_idx in self.attrib_indices:
classifier = misc.load_pkl(classifier_urls[attrib_idx])
logits = classifier.get_output_for(images, None)
predictions = tf.nn.softmax(tf.concat([logits, -logits], axis=1))
result_dict[attrib_idx] = predictions
result_expr.append(result_dict)
# Sampling loop.
results = []
for _ in range(0, self.num_samples, minibatch_size):
results += tflib.run(result_expr)
results = {key: np.concatenate([value[key] for value in results], axis=0) for key in results[0].keys()}
# Calculate conditional entropy for each attribute.
conditional_entropies = defaultdict(list)
for attrib_idx in self.attrib_indices:
# Prune the least confident samples.
pruned_indices = list(range(self.num_samples))
pruned_indices = sorted(pruned_indices, key=lambda i: -np.max(results[attrib_idx][i]))
pruned_indices = pruned_indices[:self.num_keep]
# Fit SVM to the remaining samples.
svm_targets = np.argmax(results[attrib_idx][pruned_indices], axis=1)
for space in ['latents', 'dlatents']:
svm_inputs = results[space][pruned_indices]
try:
svm = sklearn.svm.LinearSVC()
svm.fit(svm_inputs, svm_targets)
svm.score(svm_inputs, svm_targets)
svm_outputs = svm.predict(svm_inputs)
except:
svm_outputs = svm_targets # assume perfect prediction
# Calculate conditional entropy.
p = [[np.mean([case == (row, col) for case in zip(svm_outputs, svm_targets)]) for col in (0, 1)] for row in (0, 1)]
conditional_entropies[space].append(conditional_entropy(p))
# Calculate separability scores.
scores = {key: 2**np.sum(values) for key, values in conditional_entropies.items()}
self._report_result(scores['latents'], suffix='_z')
self._report_result(scores['dlatents'], suffix='_w')
#----------------------------------------------------------------------------
|