File size: 8,790 Bytes
8f87579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.

from sklearn.decomposition import FastICA, PCA, IncrementalPCA, MiniBatchSparsePCA, SparsePCA, KernelPCA
import fbpca
import numpy as np
import itertools
from types import SimpleNamespace

# ICA
class ICAEstimator():
    def __init__(self, n_components):
        self.n_components = n_components
        self.maxiter = 10000
        self.whiten = True # ICA: whitening is essential, should not be skipped
        self.transformer = FastICA(n_components, random_state=0, whiten=self.whiten, max_iter=self.maxiter)
        self.batch_support = False
        self.stdev = np.zeros((n_components,))
        self.total_var = 0.0

    def get_param_str(self):
        return "ica_c{}{}".format(self.n_components, '_w' if self.whiten else '')
    
    def fit(self, X):
        self.transformer.fit(X)
        if self.transformer.n_iter_ >= self.maxiter:
            raise RuntimeError(f'FastICA did not converge (N={X.shape[0]}, it={self.maxiter})')

        # Normalize components
        self.transformer.components_ /= np.sqrt(np.sum(self.transformer.components_**2, axis=-1, keepdims=True))

        # Save variance for later
        self.total_var = X.var(axis=0).sum()

        # Compute projected standard deviations
        self.stdev = np.dot(self.transformer.components_, X.T).std(axis=1)

        # Sort components based on explained variance
        idx = np.argsort(self.stdev)[::-1]
        self.stdev = self.stdev[idx]
        self.transformer.components_[:] = self.transformer.components_[idx]

    def get_components(self):
        var_ratio = self.stdev**2 / self.total_var
        return self.transformer.components_, self.stdev, var_ratio # ICA outputs are not normalized

# Incremental PCA
class IPCAEstimator():
    def __init__(self, n_components):
        self.n_components = n_components
        self.whiten = False
        self.transformer = IncrementalPCA(n_components, whiten=self.whiten, batch_size=max(100, 2*n_components))
        self.batch_support = True

    def get_param_str(self):
        return "ipca_c{}{}".format(self.n_components, '_w' if self.whiten else '')

    def fit(self, X):
        self.transformer.fit(X)

    def fit_partial(self, X):
        try:
            self.transformer.partial_fit(X)
            self.transformer.n_samples_seen_ = \
                self.transformer.n_samples_seen_.astype(np.int64) # avoid overflow
            return True
        except ValueError as e:
            print(f'\nIPCA error:', e)
            return False

    def get_components(self):
        stdev = np.sqrt(self.transformer.explained_variance_) # already sorted
        var_ratio = self.transformer.explained_variance_ratio_
        return self.transformer.components_, stdev, var_ratio # PCA outputs are normalized

# Standard PCA
class PCAEstimator():
    def __init__(self, n_components):
        self.n_components = n_components
        self.solver = 'full'
        self.transformer = PCA(n_components, svd_solver=self.solver)
        self.batch_support = False

    def get_param_str(self):
        return f"pca-{self.solver}_c{self.n_components}"

    def fit(self, X):
        self.transformer.fit(X)

        # Save variance for later
        self.total_var = X.var(axis=0).sum()

        # Compute projected standard deviations
        self.stdev = np.dot(self.transformer.components_, X.T).std(axis=1)

        # Sort components based on explained variance
        idx = np.argsort(self.stdev)[::-1]
        self.stdev = self.stdev[idx]
        self.transformer.components_[:] = self.transformer.components_[idx]

        # Check orthogonality
        dotps = [np.dot(*self.transformer.components_[[i, j]])
            for (i, j) in itertools.combinations(range(self.n_components), 2)]
        if not np.allclose(dotps, 0, atol=1e-4):
            print('IPCA components not orghogonal, max dot', np.abs(dotps).max())

        self.transformer.mean_ = X.mean(axis=0, keepdims=True)

    def get_components(self):
        var_ratio = self.stdev**2 / self.total_var
        return self.transformer.components_, self.stdev, var_ratio

# Facebook's PCA
# Good default choice: very fast and accurate.
# Very high sample counts won't fit into RAM,
# in which case IncrementalPCA must be used.
class FacebookPCAEstimator():
    def __init__(self, n_components):
        self.n_components = n_components
        self.transformer = SimpleNamespace()
        self.batch_support = False
        self.n_iter = 2
        self.l = 2*self.n_components

    def get_param_str(self):
        return "fbpca_c{}_it{}_l{}".format(self.n_components, self.n_iter, self.l)

    def fit(self, X):
        U, s, Va = fbpca.pca(X, k=self.n_components, n_iter=self.n_iter, raw=True, l=self.l)
        self.transformer.components_ = Va
        
        # Save variance for later
        self.total_var = X.var(axis=0).sum()

        # Compute projected standard deviations
        self.stdev = np.dot(self.transformer.components_, X.T).std(axis=1)

        # Sort components based on explained variance
        idx = np.argsort(self.stdev)[::-1]
        self.stdev = self.stdev[idx]
        self.transformer.components_[:] = self.transformer.components_[idx]

        # Check orthogonality
        dotps = [np.dot(*self.transformer.components_[[i, j]])
            for (i, j) in itertools.combinations(range(self.n_components), 2)]
        if not np.allclose(dotps, 0, atol=1e-4):
            print('FBPCA components not orghogonal, max dot', np.abs(dotps).max())

        self.transformer.mean_ = X.mean(axis=0, keepdims=True)
        
    def get_components(self):
        var_ratio = self.stdev**2 / self.total_var
        return self.transformer.components_, self.stdev, var_ratio

# Sparse PCA
# The algorithm is online along the features direction, not the samples direction
#   => no partial_fit
class SPCAEstimator():
    def __init__(self, n_components, alpha=10.0):
        self.n_components = n_components
        self.whiten = False
        self.alpha = alpha  # higher alpha => sparser components
        #self.transformer = MiniBatchSparsePCA(n_components, alpha=alpha, n_iter=100,
        #    batch_size=max(20, n_components//5), random_state=0, normalize_components=True)
        self.transformer = SparsePCA(n_components, alpha=alpha, ridge_alpha=0.01,
            max_iter=100, random_state=0, n_jobs=-1, normalize_components=True) # TODO: warm start using PCA result?
        self.batch_support = False # maybe through memmap and HDD-stored tensor
        self.stdev = np.zeros((n_components,))
        self.total_var = 0.0

    def get_param_str(self):
        return "spca_c{}_a{}{}".format(self.n_components, self.alpha, '_w' if self.whiten else '')
        
    def fit(self, X):
        self.transformer.fit(X)

        # Save variance for later
        self.total_var = X.var(axis=0).sum()

        # Compute projected standard deviations
        # NB: cannot simply project with dot product!
        self.stdev = self.transformer.transform(X).std(axis=0) # X = (n_samples, n_features)

        # Sort components based on explained variance
        idx = np.argsort(self.stdev)[::-1]
        self.stdev = self.stdev[idx]
        self.transformer.components_[:] = self.transformer.components_[idx]

        # Check orthogonality
        dotps = [np.dot(*self.transformer.components_[[i, j]])
            for (i, j) in itertools.combinations(range(self.n_components), 2)]
        if not np.allclose(dotps, 0, atol=1e-4):
            print('SPCA components not orghogonal, max dot', np.abs(dotps).max())

    def get_components(self):
        var_ratio = self.stdev**2 / self.total_var
        return self.transformer.components_, self.stdev, var_ratio # SPCA outputs are normalized

def get_estimator(name, n_components, alpha):
    if name == 'pca':
        return PCAEstimator(n_components)
    if name == 'ipca':
        return IPCAEstimator(n_components)
    elif name == 'fbpca':
        return FacebookPCAEstimator(n_components)
    elif name == 'ica':
        return ICAEstimator(n_components)
    elif name == 'spca':
        return SPCAEstimator(n_components, alpha)
    else:
        raise RuntimeError('Unknown estimator')