CharacterGAN / netdissect /fullablate.py
mfrashad's picture
Init code
8f87579
raw
history blame
9.41 kB
import torch, sys, os, argparse, textwrap, numbers, numpy, json, PIL
from torchvision import transforms
from torch.utils.data import TensorDataset
from netdissect.progress import default_progress, post_progress, desc_progress
from netdissect.progress import verbose_progress, print_progress
from netdissect.nethook import edit_layers
from netdissect.zdataset import standard_z_sample
from netdissect.autoeval import autoimport_eval
from netdissect.easydict import EasyDict
from netdissect.modelconfig import create_instrumented_model
help_epilog = '''\
Example:
python -m netdissect.evalablate \
--segmenter "netdissect.GanImageSegmenter(segvocab='lowres', segsizes=[160,288], segdiv='quad')" \
--model "proggan.from_pth_file('models/lsun_models/${SCENE}_lsun.pth')" \
--outdir dissect/dissectdir \
--classname tree \
--layer layer4 \
--size 1000
Output layout:
dissectdir/layer5/ablation/mirror-iqr.json
{ class: "mirror",
classnum: 43,
pixel_total: 41342300,
class_pixels: 1234531,
layer: "layer5",
ranking: "mirror-iqr",
ablation_units: [341, 23, 12, 142, 83, ...]
ablation_pixels: [143242, 132344, 429931, ...]
}
'''
def main():
# Training settings
def strpair(arg):
p = tuple(arg.split(':'))
if len(p) == 1:
p = p + p
return p
parser = argparse.ArgumentParser(description='Ablation eval',
epilog=textwrap.dedent(help_epilog),
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--model', type=str, default=None,
help='constructor for the model to test')
parser.add_argument('--pthfile', type=str, default=None,
help='filename of .pth file for the model')
parser.add_argument('--outdir', type=str, default='dissect', required=True,
help='directory for dissection output')
parser.add_argument('--layer', type=strpair,
help='space-separated list of layer names to edit' +
', in the form layername[:reportedname]')
parser.add_argument('--classname', type=str,
help='class name to ablate')
parser.add_argument('--metric', type=str, default='iou',
help='ordering metric for selecting units')
parser.add_argument('--unitcount', type=int, default=30,
help='number of units to ablate')
parser.add_argument('--segmenter', type=str,
help='directory containing segmentation dataset')
parser.add_argument('--netname', type=str, default=None,
help='name for network in generated reports')
parser.add_argument('--batch_size', type=int, default=25,
help='batch size for forward pass')
parser.add_argument('--mixed_units', action='store_true', default=False,
help='true to keep alpha for non-zeroed units')
parser.add_argument('--size', type=int, default=200,
help='number of images to test')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA usage')
parser.add_argument('--quiet', action='store_true', default=False,
help='silences console output')
if len(sys.argv) == 1:
parser.print_usage(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# Set up console output
verbose_progress(not args.quiet)
# Speed up pytorch
torch.backends.cudnn.benchmark = True
# Set up CUDA
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.backends.cudnn.benchmark = True
# Take defaults for model constructor etc from dissect.json settings.
with open(os.path.join(args.outdir, 'dissect.json')) as f:
dissection = EasyDict(json.load(f))
if args.model is None:
args.model = dissection.settings.model
if args.pthfile is None:
args.pthfile = dissection.settings.pthfile
if args.segmenter is None:
args.segmenter = dissection.settings.segmenter
if args.layer is None:
args.layer = dissection.settings.layers[0]
args.layers = [args.layer]
# Also load specific analysis
layername = args.layer[1]
if args.metric == 'iou':
summary = dissection
else:
with open(os.path.join(args.outdir, layername, args.metric,
args.classname, 'summary.json')) as f:
summary = EasyDict(json.load(f))
# Instantiate generator
model = create_instrumented_model(args, gen=True, edit=True)
if model is None:
print('No model specified')
sys.exit(1)
# Instantiate model
device = next(model.parameters()).device
input_shape = model.input_shape
# 4d input if convolutional, 2d input if first layer is linear.
raw_sample = standard_z_sample(args.size, input_shape[1], seed=3).view(
(args.size,) + input_shape[1:])
dataset = TensorDataset(raw_sample)
# Create the segmenter
segmenter = autoimport_eval(args.segmenter)
# Now do the actual work.
labelnames, catnames = (
segmenter.get_label_and_category_names(dataset))
label_category = [catnames.index(c) if c in catnames else 0
for l, c in labelnames]
labelnum_from_name = {n[0]: i for i, n in enumerate(labelnames)}
segloader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size, num_workers=10,
pin_memory=(device.type == 'cuda'))
# Index the dissection layers by layer name.
# First, collect a baseline
for l in model.ablation:
model.ablation[l] = None
# For each sort-order, do an ablation
progress = default_progress()
classname = args.classname
classnum = labelnum_from_name[classname]
# Get iou ranking from dissect.json
iou_rankname = '%s-%s' % (classname, 'iou')
dissect_layer = {lrec.layer: lrec for lrec in dissection.layers}
iou_ranking = next(r for r in dissect_layer[layername].rankings
if r.name == iou_rankname)
# Get trained ranking from summary.json
rankname = '%s-%s' % (classname, args.metric)
summary_layer = {lrec.layer: lrec for lrec in summary.layers}
ranking = next(r for r in summary_layer[layername].rankings
if r.name == rankname)
# Get ordering, first by ranking, then break ties by iou.
ordering = [t[2] for t in sorted([(s1, s2, i)
for i, (s1, s2) in enumerate(zip(ranking.score, iou_ranking.score))])]
values = (-numpy.array(ranking.score))[ordering]
if not args.mixed_units:
values[...] = 1
ablationdir = os.path.join(args.outdir, layername, 'fullablation')
measurements = measure_full_ablation(segmenter, segloader,
model, classnum, layername,
ordering[:args.unitcount], values[:args.unitcount])
measurements = measurements.cpu().numpy().tolist()
os.makedirs(ablationdir, exist_ok=True)
with open(os.path.join(ablationdir, '%s.json'%rankname), 'w') as f:
json.dump(dict(
classname=classname,
classnum=classnum,
baseline=measurements[0],
layer=layername,
metric=args.metric,
ablation_units=ordering,
ablation_values=values.tolist(),
ablation_effects=measurements[1:]), f)
def measure_full_ablation(segmenter, loader, model, classnum, layer,
ordering, values):
'''
Quick and easy counting of segmented pixels reduced by ablating units.
'''
progress = default_progress()
device = next(model.parameters()).device
feature_units = model.feature_shape[layer][1]
feature_shape = model.feature_shape[layer][2:]
repeats = len(ordering)
total_scores = torch.zeros(repeats + 1)
print(ordering)
print(values.tolist())
with torch.no_grad():
for l in model.ablation:
model.ablation[l] = None
for i, [ibz] in enumerate(progress(loader)):
ibz = ibz.cuda()
for num_units in progress(range(len(ordering) + 1)):
ablation = torch.zeros(feature_units, device=device)
ablation[ordering[:num_units]] = torch.tensor(
values[:num_units]).to(ablation.device, ablation.dtype)
model.ablation[layer] = ablation
tensor_images = model(ibz)
seg = segmenter.segment_batch(tensor_images, downsample=2)
mask = (seg == classnum).max(1)[0]
total_scores[num_units] += mask.sum().float().cpu()
return total_scores
def count_segments(segmenter, loader, model):
total_bincount = 0
data_size = 0
progress = default_progress()
for i, batch in enumerate(progress(loader)):
tensor_images = model(z_batch.to(device))
seg = segmenter.segment_batch(tensor_images, downsample=2)
bc = (seg + index[:, None, None, None] * self.num_classes).view(-1
).bincount(minlength=z_batch.shape[0] * self.num_classes)
data_size += seg.shape[0] * seg.shape[2] * seg.shape[3]
total_bincount += batch_label_counts.float().sum(0)
normalized_bincount = total_bincount / data_size
return normalized_bincount
if __name__ == '__main__':
main()