mfrashad's picture
Init code
8f87579
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Multi-resolution input data pipeline."""
import os
import glob
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
#----------------------------------------------------------------------------
# Parse individual image from a tfrecords file.
def parse_tfrecord_tf(record):
features = tf.parse_single_example(record, features={
'shape': tf.FixedLenFeature([3], tf.int64),
'data': tf.FixedLenFeature([], tf.string)})
data = tf.decode_raw(features['data'], tf.uint8)
return tf.reshape(data, features['shape'])
def parse_tfrecord_np(record):
ex = tf.train.Example()
ex.ParseFromString(record)
shape = ex.features.feature['shape'].int64_list.value # temporary pylint workaround # pylint: disable=no-member
data = ex.features.feature['data'].bytes_list.value[0] # temporary pylint workaround # pylint: disable=no-member
return np.fromstring(data, np.uint8).reshape(shape)
#----------------------------------------------------------------------------
# Dataset class that loads data from tfrecords files.
class TFRecordDataset:
def __init__(self,
tfrecord_dir, # Directory containing a collection of tfrecords files.
resolution = None, # Dataset resolution, None = autodetect.
label_file = None, # Relative path of the labels file, None = autodetect.
max_label_size = 0, # 0 = no labels, 'full' = full labels, <int> = N first label components.
repeat = True, # Repeat dataset indefinitely.
shuffle_mb = 4096, # Shuffle data within specified window (megabytes), 0 = disable shuffling.
prefetch_mb = 2048, # Amount of data to prefetch (megabytes), 0 = disable prefetching.
buffer_mb = 256, # Read buffer size (megabytes).
num_threads = 2): # Number of concurrent threads.
self.tfrecord_dir = tfrecord_dir
self.resolution = None
self.resolution_log2 = None
self.shape = [] # [channel, height, width]
self.dtype = 'uint8'
self.dynamic_range = [0, 255]
self.label_file = label_file
self.label_size = None # [component]
self.label_dtype = None
self._np_labels = None
self._tf_minibatch_in = None
self._tf_labels_var = None
self._tf_labels_dataset = None
self._tf_datasets = dict()
self._tf_iterator = None
self._tf_init_ops = dict()
self._tf_minibatch_np = None
self._cur_minibatch = -1
self._cur_lod = -1
# List tfrecords files and inspect their shapes.
assert os.path.isdir(self.tfrecord_dir)
tfr_files = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.tfrecords')))
assert len(tfr_files) >= 1
tfr_shapes = []
for tfr_file in tfr_files:
tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt):
tfr_shapes.append(parse_tfrecord_np(record).shape)
break
# Autodetect label filename.
if self.label_file is None:
guess = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.labels')))
if len(guess):
self.label_file = guess[0]
elif not os.path.isfile(self.label_file):
guess = os.path.join(self.tfrecord_dir, self.label_file)
if os.path.isfile(guess):
self.label_file = guess
# Determine shape and resolution.
max_shape = max(tfr_shapes, key=np.prod)
self.resolution = resolution if resolution is not None else max_shape[1]
self.resolution_log2 = int(np.log2(self.resolution))
self.shape = [max_shape[0], self.resolution, self.resolution]
tfr_lods = [self.resolution_log2 - int(np.log2(shape[1])) for shape in tfr_shapes]
assert all(shape[0] == max_shape[0] for shape in tfr_shapes)
assert all(shape[1] == shape[2] for shape in tfr_shapes)
assert all(shape[1] == self.resolution // (2**lod) for shape, lod in zip(tfr_shapes, tfr_lods))
assert all(lod in tfr_lods for lod in range(self.resolution_log2 - 1))
# Load labels.
assert max_label_size == 'full' or max_label_size >= 0
self._np_labels = np.zeros([1<<20, 0], dtype=np.float32)
if self.label_file is not None and max_label_size != 0:
self._np_labels = np.load(self.label_file)
assert self._np_labels.ndim == 2
if max_label_size != 'full' and self._np_labels.shape[1] > max_label_size:
self._np_labels = self._np_labels[:, :max_label_size]
self.label_size = self._np_labels.shape[1]
self.label_dtype = self._np_labels.dtype.name
# Build TF expressions.
with tf.name_scope('Dataset'), tf.device('/cpu:0'):
self._tf_minibatch_in = tf.placeholder(tf.int64, name='minibatch_in', shape=[])
self._tf_labels_var = tflib.create_var_with_large_initial_value(self._np_labels, name='labels_var')
self._tf_labels_dataset = tf.data.Dataset.from_tensor_slices(self._tf_labels_var)
for tfr_file, tfr_shape, tfr_lod in zip(tfr_files, tfr_shapes, tfr_lods):
if tfr_lod < 0:
continue
dset = tf.data.TFRecordDataset(tfr_file, compression_type='', buffer_size=buffer_mb<<20)
dset = dset.map(parse_tfrecord_tf, num_parallel_calls=num_threads)
dset = tf.data.Dataset.zip((dset, self._tf_labels_dataset))
bytes_per_item = np.prod(tfr_shape) * np.dtype(self.dtype).itemsize
if shuffle_mb > 0:
dset = dset.shuffle(((shuffle_mb << 20) - 1) // bytes_per_item + 1)
if repeat:
dset = dset.repeat()
if prefetch_mb > 0:
dset = dset.prefetch(((prefetch_mb << 20) - 1) // bytes_per_item + 1)
dset = dset.batch(self._tf_minibatch_in)
self._tf_datasets[tfr_lod] = dset
self._tf_iterator = tf.data.Iterator.from_structure(self._tf_datasets[0].output_types, self._tf_datasets[0].output_shapes)
self._tf_init_ops = {lod: self._tf_iterator.make_initializer(dset) for lod, dset in self._tf_datasets.items()}
# Use the given minibatch size and level-of-detail for the data returned by get_minibatch_tf().
def configure(self, minibatch_size, lod=0):
lod = int(np.floor(lod))
assert minibatch_size >= 1 and lod in self._tf_datasets
if self._cur_minibatch != minibatch_size or self._cur_lod != lod:
self._tf_init_ops[lod].run({self._tf_minibatch_in: minibatch_size})
self._cur_minibatch = minibatch_size
self._cur_lod = lod
# Get next minibatch as TensorFlow expressions.
def get_minibatch_tf(self): # => images, labels
return self._tf_iterator.get_next()
# Get next minibatch as NumPy arrays.
def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
self.configure(minibatch_size, lod)
if self._tf_minibatch_np is None:
self._tf_minibatch_np = self.get_minibatch_tf()
return tflib.run(self._tf_minibatch_np)
# Get random labels as TensorFlow expression.
def get_random_labels_tf(self, minibatch_size): # => labels
if self.label_size > 0:
with tf.device('/cpu:0'):
return tf.gather(self._tf_labels_var, tf.random_uniform([minibatch_size], 0, self._np_labels.shape[0], dtype=tf.int32))
return tf.zeros([minibatch_size, 0], self.label_dtype)
# Get random labels as NumPy array.
def get_random_labels_np(self, minibatch_size): # => labels
if self.label_size > 0:
return self._np_labels[np.random.randint(self._np_labels.shape[0], size=[minibatch_size])]
return np.zeros([minibatch_size, 0], self.label_dtype)
#----------------------------------------------------------------------------
# Base class for datasets that are generated on the fly.
class SyntheticDataset:
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
self.resolution = resolution
self.resolution_log2 = int(np.log2(resolution))
self.shape = [num_channels, resolution, resolution]
self.dtype = dtype
self.dynamic_range = dynamic_range
self.label_size = label_size
self.label_dtype = label_dtype
self._tf_minibatch_var = None
self._tf_lod_var = None
self._tf_minibatch_np = None
self._tf_labels_np = None
assert self.resolution == 2 ** self.resolution_log2
with tf.name_scope('Dataset'):
self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var')
def configure(self, minibatch_size, lod=0):
lod = int(np.floor(lod))
assert minibatch_size >= 1 and 0 <= lod <= self.resolution_log2
tflib.set_vars({self._tf_minibatch_var: minibatch_size, self._tf_lod_var: lod})
def get_minibatch_tf(self): # => images, labels
with tf.name_scope('SyntheticDataset'):
shrink = tf.cast(2.0 ** tf.cast(self._tf_lod_var, tf.float32), tf.int32)
shape = [self.shape[0], self.shape[1] // shrink, self.shape[2] // shrink]
images = self._generate_images(self._tf_minibatch_var, self._tf_lod_var, shape)
labels = self._generate_labels(self._tf_minibatch_var)
return images, labels
def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
self.configure(minibatch_size, lod)
if self._tf_minibatch_np is None:
self._tf_minibatch_np = self.get_minibatch_tf()
return tflib.run(self._tf_minibatch_np)
def get_random_labels_tf(self, minibatch_size): # => labels
with tf.name_scope('SyntheticDataset'):
return self._generate_labels(minibatch_size)
def get_random_labels_np(self, minibatch_size): # => labels
self.configure(minibatch_size)
if self._tf_labels_np is None:
self._tf_labels_np = self.get_random_labels_tf(minibatch_size)
return tflib.run(self._tf_labels_np)
def _generate_images(self, minibatch, lod, shape): # to be overridden by subclasses # pylint: disable=unused-argument
return tf.zeros([minibatch] + shape, self.dtype)
def _generate_labels(self, minibatch): # to be overridden by subclasses
return tf.zeros([minibatch, self.label_size], self.label_dtype)
#----------------------------------------------------------------------------
# Helper func for constructing a dataset object using the given options.
def load_dataset(class_name='training.dataset.TFRecordDataset', data_dir=None, verbose=False, **kwargs):
adjusted_kwargs = dict(kwargs)
if 'tfrecord_dir' in adjusted_kwargs and data_dir is not None:
adjusted_kwargs['tfrecord_dir'] = os.path.join(data_dir, adjusted_kwargs['tfrecord_dir'])
if verbose:
print('Streaming data using %s...' % class_name)
dataset = dnnlib.util.get_obj_by_name(class_name)(**adjusted_kwargs)
if verbose:
print('Dataset shape =', np.int32(dataset.shape).tolist())
print('Dynamic range =', dataset.dynamic_range)
print('Label size =', dataset.label_size)
return dataset
#----------------------------------------------------------------------------