Spaces:
Paused
Paused
import deepsparse | |
import gradio as gr | |
from typing import Tuple, List | |
deepsparse.cpu.print_hardware_capability() | |
MODEL_ID = "zoo:llama2-7b-gsm8k_llama2_pretrain-pruned80_quantized" | |
DESCRIPTION = f""" | |
# Llama 2 Sparse Finetuned on GSM8k with DeepSparse | |
![NM Logo](https://files.slack.com/files-pri/T020WGRLR8A-F05TXD28BBK/neuralmagic-logo.png?pub_secret=54e8db19db) | |
Model ID: {MODEL_ID} | |
๐ **Experience the power of LLM mathematical reasoning** through [our Llama 2 sparse finetuned](https://arxiv.org/abs/2310.06927) on the [GSM8K dataset](https://huggingface.co/datasets/gsm8k). | |
GSM8K, short for Grade School Math 8K, is a collection of 8.5K high-quality linguistically diverse grade school math word problems, designed to challenge question-answering systems with multi-step reasoning. | |
Observe the model's performance in deciphering complex math questions and offering detailed step-by-step solutions. | |
## Accelerated Inferenced on CPUs | |
The Llama 2 model runs purely on CPU courtesy of [sparse software execution by DeepSparse](https://github.com/neuralmagic/deepsparse/tree/main/research/mpt). | |
DeepSparse provides accelerated inference by taking advantage of the model's weight sparsity to deliver tokens fast! | |
![Speedup](https://cdn-uploads.huggingface.co/production/uploads/60466e4b4f40b01b66151416/2XjSvMtX1DO3WY5Rx-L-1.png) | |
""" | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 200 | |
# Setup the engine | |
pipe = deepsparse.TextGeneration(model=MODEL_ID, sequence_length=MAX_MAX_NEW_TOKENS) | |
def clear_and_save_textbox(message: str) -> Tuple[str, str]: | |
return "", message | |
def display_input( | |
message: str, history: List[Tuple[str, str]] | |
) -> List[Tuple[str, str]]: | |
history.append((message, "")) | |
return history | |
def delete_prev_fn(history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]: | |
try: | |
message, _ = history.pop() | |
except IndexError: | |
message = "" | |
return history, message or "" | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(DESCRIPTION) | |
with gr.Column(): | |
gr.Markdown("""### Sparse Finetuned Llama Demo""") | |
with gr.Group(): | |
chatbot = gr.Chatbot(label="Chatbot") | |
with gr.Row(): | |
textbox = gr.Textbox( | |
container=False, | |
placeholder="Type a message...", | |
scale=10, | |
) | |
submit_button = gr.Button( | |
"Submit", variant="primary", scale=1, min_width=0 | |
) | |
with gr.Row(): | |
retry_button = gr.Button("๐ Retry", variant="secondary") | |
undo_button = gr.Button("โฉ๏ธ Undo", variant="secondary") | |
clear_button = gr.Button("๐๏ธ Clear", variant="secondary") | |
saved_input = gr.State() | |
gr.Examples( | |
examples=[ | |
"James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?", | |
"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?", | |
"Gretchen has 110 coins. There are 30 more gold coins than silver coins. How many gold coins does Gretchen have?", | |
], | |
inputs=[textbox], | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=DEFAULT_MAX_NEW_TOKENS, | |
minimum=0, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.3, | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
# Generation inference | |
def generate( | |
message, | |
history, | |
max_new_tokens: int, | |
temperature: float, | |
): | |
generation_config = { | |
"max_new_tokens": max_new_tokens, | |
"temperature": temperature, | |
} | |
inference = pipe(sequences=message, streaming=False, **generation_config) | |
# history[-1][1] += message | |
# for token in inference: | |
# history[-1][1] += token.generations[0].text | |
# yield history | |
history[-1][1] += inference.generations[0].text | |
print(pipe.timer_manager) | |
return history | |
textbox.submit( | |
fn=clear_and_save_textbox, | |
inputs=textbox, | |
outputs=[textbox, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=display_input, | |
inputs=[saved_input, chatbot], | |
outputs=chatbot, | |
api_name=False, | |
queue=False, | |
).success( | |
generate, | |
inputs=[ | |
saved_input, | |
chatbot, | |
max_new_tokens, | |
temperature, | |
], | |
outputs=[chatbot], | |
api_name=False, | |
) | |
submit_button.click( | |
fn=clear_and_save_textbox, | |
inputs=textbox, | |
outputs=[textbox, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=display_input, | |
inputs=[saved_input, chatbot], | |
outputs=chatbot, | |
api_name=False, | |
queue=False, | |
).success( | |
generate, | |
inputs=[ | |
saved_input, | |
chatbot, | |
max_new_tokens, | |
temperature, | |
], | |
outputs=[chatbot], | |
api_name=False, | |
) | |
retry_button.click( | |
fn=delete_prev_fn, | |
inputs=chatbot, | |
outputs=[chatbot, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=display_input, | |
inputs=[saved_input, chatbot], | |
outputs=chatbot, | |
api_name=False, | |
queue=False, | |
).then( | |
generate, | |
inputs=[ | |
saved_input, | |
chatbot, | |
max_new_tokens, | |
temperature, | |
], | |
outputs=[chatbot], | |
api_name=False, | |
) | |
undo_button.click( | |
fn=delete_prev_fn, | |
inputs=chatbot, | |
outputs=[chatbot, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=lambda x: x, | |
inputs=[saved_input], | |
outputs=textbox, | |
api_name=False, | |
queue=False, | |
) | |
clear_button.click( | |
fn=lambda: ([], ""), | |
outputs=[chatbot, saved_input], | |
queue=False, | |
api_name=False, | |
) | |
demo.queue().launch() | |