FeatUp / app.py
mhamilton723's picture
fix app
eaaab0d
raw
history blame
4.49 kB
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
from PIL import Image
import gradio as gr
from featup.util import norm, unnorm, pca, remove_axes
from pytorch_lightning import seed_everything
import os
def plot_feats(image, lr, hr):
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
seed_everything(0)
[lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)], dim=9)
fig, ax = plt.subplots(3, 3, figsize=(15, 15))
ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[0, 0].set_title("Image", fontsize=22)
ax[0, 1].set_title("Original", fontsize=22)
ax[0, 2].set_title("Upsampled Features", fontsize=22)
ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22)
ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22)
ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22)
ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
remove_axes(ax)
plt.tight_layout()
plt.close(fig) # Close plt to avoid additional empty plots
return fig
if __name__ == "__main__":
import requests
import os
def download_image(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as file:
file.write(response.content)
base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/"
sample_images_urls = {
"skate.jpg": base_url + "skate.jpg",
"car.jpg": base_url + "car.jpg",
"plant.png": base_url + "plant.png",
}
sample_images_dir = "sample_images"
# Ensure the directory for sample images exists
os.makedirs(sample_images_dir, exist_ok=True)
# Download each sample image
for filename, url in sample_images_urls.items():
save_path = os.path.join(sample_images_dir, filename)
# Download the image if it doesn't already exist
if not os.path.exists(save_path):
print(f"Downloading {filename}...")
download_image(url, save_path)
else:
print(f"{filename} already exists. Skipping download.")
os.environ['TORCH_HOME'] = '/tmp/.cache'
options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50']
image_input = gr.Image(label="Choose an image to featurize",
height=480,
type="pil",
image_mode='RGB',
sources=['upload', 'webcam', 'clipboard']
)
model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample')
models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
def upsample_features(image, model_option):
# Image preprocessing
input_size = 224
transform = T.Compose([
T.Resize(input_size),
T.CenterCrop((input_size, input_size)),
T.ToTensor(),
norm
])
image_tensor = transform(image).unsqueeze(0).cuda()
# Load the selected model
upsampler = models[model_option].cuda()
hr_feats = upsampler(image_tensor)
lr_feats = upsampler.model(image_tensor)
upsampler.cpu()
return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
demo = gr.Interface(fn=upsample_features,
inputs=[image_input, model_option],
outputs="plot",
title="Feature Upsampling Demo",
description="This demo allows you to upsample features of an image using selected models.",
examples=[
["sample_images/skate.jpg", "dino16"],
["sample_images/car.jpg", "dinov2"],
["sample_images/plant.png", "dino16"],
]
)
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)