Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
import gradio as gr | |
from featup.util import norm, unnorm, pca, remove_axes | |
from pytorch_lightning import seed_everything | |
import os | |
def plot_feats(image, lr, hr): | |
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3 | |
seed_everything(0) | |
[lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)], dim=9) | |
fig, ax = plt.subplots(3, 3, figsize=(15, 15)) | |
ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu()) | |
ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu()) | |
ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu()) | |
ax[0, 0].set_title("Image", fontsize=22) | |
ax[0, 1].set_title("Original", fontsize=22) | |
ax[0, 2].set_title("Upsampled Features", fontsize=22) | |
ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu()) | |
ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22) | |
ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu()) | |
ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu()) | |
ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22) | |
ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu()) | |
ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu()) | |
ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22) | |
ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu()) | |
remove_axes(ax) | |
plt.tight_layout() | |
plt.close(fig) # Close plt to avoid additional empty plots | |
return fig | |
if __name__ == "__main__": | |
import requests | |
import os | |
def download_image(url, save_path): | |
response = requests.get(url) | |
with open(save_path, 'wb') as file: | |
file.write(response.content) | |
base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/" | |
sample_images_urls = { | |
"skate.jpg": base_url + "skate.jpg", | |
"car.jpg": base_url + "car.jpg", | |
"plant.png": base_url + "plant.png", | |
} | |
sample_images_dir = "sample_images" | |
# Ensure the directory for sample images exists | |
os.makedirs(sample_images_dir, exist_ok=True) | |
# Download each sample image | |
for filename, url in sample_images_urls.items(): | |
save_path = os.path.join(sample_images_dir, filename) | |
# Download the image if it doesn't already exist | |
if not os.path.exists(save_path): | |
print(f"Downloading {filename}...") | |
download_image(url, save_path) | |
else: | |
print(f"{filename} already exists. Skipping download.") | |
os.environ['TORCH_HOME'] = '/tmp/.cache' | |
options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50'] | |
image_input = gr.Image(label="Choose an image to featurize", | |
height=480, | |
type="pil", | |
image_mode='RGB', | |
sources=['upload', 'webcam', 'clipboard'] | |
) | |
model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample') | |
models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options} | |
def upsample_features(image, model_option): | |
# Image preprocessing | |
input_size = 224 | |
transform = T.Compose([ | |
T.Resize(input_size), | |
T.CenterCrop((input_size, input_size)), | |
T.ToTensor(), | |
norm | |
]) | |
image_tensor = transform(image).unsqueeze(0).cuda() | |
# Load the selected model | |
upsampler = models[model_option].cuda() | |
hr_feats = upsampler(image_tensor) | |
lr_feats = upsampler.model(image_tensor) | |
upsampler.cpu() | |
return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0]) | |
demo = gr.Interface(fn=upsample_features, | |
inputs=[image_input, model_option], | |
outputs="plot", | |
title="Feature Upsampling Demo", | |
description="This demo allows you to upsample features of an image using selected models.", | |
examples=[ | |
["sample_images/skate.jpg", "dino16"], | |
["sample_images/car.jpg", "dinov2"], | |
["sample_images/plant.png", "dino16"], | |
] | |
) | |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True) | |