Spaces:
Sleeping
Sleeping
File size: 20,787 Bytes
8c02b48 439683b 8c02b48 dcc0d7d 8c02b48 e1d1f6d 8c02b48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import streamlit as st
from groq import Groq
import json
import os
from io import BytesIO
from md2pdf.core import md2pdf
from dotenv import load_dotenv
from download import download_video_audio, delete_download
load_dotenv()
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", None)
MAX_FILE_SIZE = 50 * 1024 * 1024 # 25 MB
FILE_TOO_LARGE_MESSAGE = "The audio file is too large. If you used a YouTube link, please try a shorter video clip. If you uploaded an audio file, try trimming or compressing the audio to under 25 MB."
audio_file_path = None
if 'api_key' not in st.session_state:
st.session_state.api_key = GROQ_API_KEY
if 'groq' not in st.session_state:
if GROQ_API_KEY:
st.session_state.groq = Groq()
st.set_page_config(
page_title="Groqnotes",
page_icon="ποΈ",
)
class GenerationStatistics:
def __init__(self, input_time=0,output_time=0,input_tokens=0,output_tokens=0,total_time=0,model_name="llama3-8b-8192"):
self.input_time = input_time
self.output_time = output_time
self.input_tokens = input_tokens
self.output_tokens = output_tokens
self.total_time = total_time # Sum of queue, prompt (input), and completion (output) times
self.model_name = model_name
def get_input_speed(self):
"""
Tokens per second calculation for input
"""
if self.input_time != 0:
return self.input_tokens / self.input_time
else:
return 0
def get_output_speed(self):
"""
Tokens per second calculation for output
"""
if self.output_time != 0:
return self.output_tokens / self.output_time
else:
return 0
def add(self, other):
"""
Add statistics from another GenerationStatistics object to this one.
"""
if not isinstance(other, GenerationStatistics):
raise TypeError("Can only add GenerationStatistics objects")
self.input_time += other.input_time
self.output_time += other.output_time
self.input_tokens += other.input_tokens
self.output_tokens += other.output_tokens
self.total_time += other.total_time
def __str__(self):
return (f"\n## {self.get_output_speed():.2f} T/s β‘\nRound trip time: {self.total_time:.2f}s Model: {self.model_name}\n\n"
f"| Metric | Input | Output | Total |\n"
f"|-----------------|----------------|-----------------|----------------|\n"
f"| Speed (T/s) | {self.get_input_speed():.2f} | {self.get_output_speed():.2f} | {(self.input_tokens + self.output_tokens) / self.total_time if self.total_time != 0 else 0:.2f} |\n"
f"| Tokens | {self.input_tokens} | {self.output_tokens} | {self.input_tokens + self.output_tokens} |\n"
f"| Inference Time (s) | {self.input_time:.2f} | {self.output_time:.2f} | {self.total_time:.2f} |")
class NoteSection:
def __init__(self, structure, transcript):
self.structure = structure
self.contents = {title: "" for title in self.flatten_structure(structure)}
self.placeholders = {title: st.empty() for title in self.flatten_structure(structure)}
st.markdown("## Raw transcript:")
st.markdown(transcript)
st.markdown("---")
def flatten_structure(self, structure):
sections = []
for title, content in structure.items():
sections.append(title)
if isinstance(content, dict):
sections.extend(self.flatten_structure(content))
return sections
def update_content(self, title, new_content):
try:
self.contents[title] += new_content
self.display_content(title)
except TypeError as e:
pass
def display_content(self, title):
if self.contents[title].strip():
self.placeholders[title].markdown(f"## {title}\n{self.contents[title]}")
def return_existing_contents(self, level=1) -> str:
existing_content = ""
for title, content in self.structure.items():
if self.contents[title].strip(): # Only include title if there is content
existing_content += f"{'#' * level} {title}\n{self.contents[title]}.\n\n"
if isinstance(content, dict):
existing_content += self.get_markdown_content(content, level + 1)
return existing_content
def display_structure(self, structure=None, level=1):
if structure is None:
structure = self.structure
for title, content in structure.items():
if self.contents[title].strip(): # Only display title if there is content
st.markdown(f"{'#' * level} {title}")
self.placeholders[title].markdown(self.contents[title])
if isinstance(content, dict):
self.display_structure(content, level + 1)
def display_toc(self, structure, columns, level=1, col_index=0):
for title, content in structure.items():
with columns[col_index % len(columns)]:
st.markdown(f"{' ' * (level-1) * 2}- {title}")
col_index += 1
if isinstance(content, dict):
col_index = self.display_toc(content, columns, level + 1, col_index)
return col_index
def get_markdown_content(self, structure=None, level=1):
"""
Returns the markdown styled pure string with the contents.
"""
if structure is None:
structure = self.structure
markdown_content = ""
for title, content in structure.items():
if self.contents[title].strip(): # Only include title if there is content
markdown_content += f"{'#' * level} {title}\n{self.contents[title]}.\n\n"
if isinstance(content, dict):
markdown_content += self.get_markdown_content(content, level + 1)
return markdown_content
def create_markdown_file(content: str) -> BytesIO:
"""
Create a Markdown file from the provided content.
"""
markdown_file = BytesIO()
markdown_file.write(content.encode('utf-8'))
markdown_file.seek(0)
return markdown_file
def create_pdf_file(content: str):
"""
Create a PDF file from the provided content.
"""
pdf_buffer = BytesIO()
md2pdf(pdf_buffer, md_content=content)
pdf_buffer.seek(0)
return pdf_buffer
def transcribe_audio(audio_file):
"""
Transcribes audio using Groq's Whisper API.
"""
transcription = st.session_state.groq.audio.transcriptions.create(
file=audio_file,
model="whisper-large-v3",
prompt="",
response_format="json",
language="en",
temperature=0.0
)
results = transcription.text
return results
def generate_notes_structure(transcript: str, model: str = "llama3-70b-8192"):
"""
Returns notes structure content as well as total tokens and total time for generation.
"""
shot_example = """
"Introduction": "Introduction to the AMA session, including the topic of Groq scaling architecture and the panelists",
"Panelist Introductions": "Brief introductions from Igor, Andrew, and Omar, covering their backgrounds and roles at Groq",
"Groq Scaling Architecture Overview": "High-level overview of Groq's scaling architecture, covering hardware, software, and cloud components",
"Hardware Perspective": "Igor's overview of Groq's hardware approach, using an analogy of city traffic management to explain the traditional compute approach and Groq's innovative approach",
"Traditional Compute": "Description of traditional compute approach, including asynchronous nature, queues, and poor utilization of infrastructure",
"Groq's Approach": "Description of Groq's approach, including pre-orchestrated movement of data, low latency, high energy efficiency, and high utilization of resources",
"Hardware Implementation": "Igor's explanation of the hardware implementation, including a comparison of GPU and LPU architectures"
}"""
completion = st.session_state.groq.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": "Write in JSON format:\n\n{\"Title of section goes here\":\"Description of section goes here\",\"Title of section goes here\":\"Description of section goes here\",\"Title of section goes here\":\"Description of section goes here\"}"
},
{
"role": "user",
"content": f"### Transcript {transcript}\n\n### Example\n\n{shot_example}### Instructions\n\nCreate a structure for comprehensive notes on the above transcribed audio. Section titles and content descriptions must be comprehensive. Quality over quantity."
}
],
temperature=0.3,
max_tokens=8000,
top_p=1,
stream=False,
response_format={"type": "json_object"},
stop=None,
)
usage = completion.usage
statistics_to_return = GenerationStatistics(input_time=usage.prompt_time, output_time=usage.completion_time, input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens, total_time=usage.total_time, model_name=model)
return statistics_to_return, completion.choices[0].message.content
def generate_section(transcript: str, existing_notes: str, section: str, model: str = "llama3-8b-8192"):
stream = st.session_state.groq.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": "You are an expert writer. Generate a comprehensive note for the section provided based factually on the transcript provided. Do *not* repeat any content from previous sections."
},
{
"role": "user",
"content": f"### Transcript\n\n{transcript}\n\n### Existing Notes\n\n{existing_notes}\n\n### Instructions\n\nGenerate comprehensive notes for this section only based on the transcript: \n\n{section}"
}
],
temperature=0.3,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
for chunk in stream:
tokens = chunk.choices[0].delta.content
if tokens:
yield tokens
if x_groq := chunk.x_groq:
if not x_groq.usage:
continue
usage = x_groq.usage
statistics_to_return = GenerationStatistics(input_time=usage.prompt_time, output_time=usage.completion_time, input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens, total_time=usage.total_time, model_name=model)
yield statistics_to_return
# Initialize
if 'button_disabled' not in st.session_state:
st.session_state.button_disabled = False
if 'button_text' not in st.session_state:
st.session_state.button_text = "Generate Notes"
if 'statistics_text' not in st.session_state:
st.session_state.statistics_text = ""
st.write("""
# Groqnotes: Create structured notes from audio ποΈβ‘
""")
def disable():
st.session_state.button_disabled = True
def enable():
st.session_state.button_disabled = False
def empty_st():
st.empty()
try:
with st.sidebar:
audio_files = {
"Transformers Explained by Google Cloud Tech": {
"file_path": "assets/audio/transformers_explained.m4a",
"youtube_link": "https://www.youtube.com/watch?v=SZorAJ4I-sA"
},
"The Essence of Calculus by 3Blue1Brown": {
"file_path": "assets/audio/essence_calculus.m4a",
"youtube_link": "https://www.youtube.com/watch?v=WUvTyaaNkzM"
},
"First 20 minutes of Groq's AMA": {
"file_path": "assets/audio/groq_ama_trimmed_20min.m4a",
"youtube_link": "https://www.youtube.com/watch?v=UztfweS-7MU"
}
}
st.write(f"# ποΈ GroqNotes \n## Generate notes from audio in seconds using Groq, Whisper, and Llama3")
st.markdown(f"[Github Repository](https://github.com/bklieger/groqnotes)\n\nAs with all generative AI, content may include inaccurate or placeholder information. GroqNotes is in beta and all feedback is welcome!")
st.write(f"---")
st.write("# Customization Settings\nπ§ͺ These settings are experimental.\n")
st.write(f"By default, GroqNotes uses Llama3-70b for generating the notes outline and Llama3-8b for the content. This balances quality with speed and rate limit usage. You can customize these selections below.")
outline_model_options = ["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"]
outline_selected_model = st.selectbox("Outline generation:", outline_model_options)
content_model_options = ["llama3-8b-8192", "llama3-70b-8192", "mixtral-8x7b-32768", "gemma-7b-it"]
content_selected_model = st.selectbox("Content generation:", content_model_options)
# Add note about rate limits
st.info("Important: Different models have different token and rate limits which may cause runtime errors.")
if st.button('End Generation and Download Notes'):
if "notes" in st.session_state:
# Create markdown file
markdown_file = create_markdown_file(st.session_state.notes.get_markdown_content())
st.download_button(
label='Download Text',
data=markdown_file,
file_name='generated_notes.txt',
mime='text/plain'
)
# Create pdf file (styled)
pdf_file = create_pdf_file(st.session_state.notes.get_markdown_content())
st.download_button(
label='Download PDF',
data=pdf_file,
file_name='generated_notes.pdf',
mime='application/pdf'
)
st.session_state.button_disabled = False
else:
raise ValueError("Please generate content first before downloading the notes.")
input_method = st.radio("Choose input method:", ["Upload audio file", "YouTube link"])
audio_file = None
youtube_link = None
groq_input_key = None
with st.form("groqform"):
if not GROQ_API_KEY:
groq_input_key = st.text_input("Enter your Groq API Key (gsk_yA...):", "", type="password")
# Add radio button to choose between file upload and YouTube link
if input_method == "Upload audio file":
audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a", "mp4"]) # TODO: Add a max size
else:
youtube_link = st.text_input("Enter YouTube link:", "")
# Generate button
submitted = st.form_submit_button(st.session_state.button_text, on_click=disable, disabled=st.session_state.button_disabled)
#processing status
status_text = st.empty()
def display_status(text):
status_text.write(text)
def clear_status():
status_text.empty()
download_status_text = st.empty()
def display_download_status(text:str):
download_status_text.write(text)
def clear_download_status():
download_status_text.empty()
# Statistics
placeholder = st.empty()
def display_statistics():
with placeholder.container():
if st.session_state.statistics_text:
if "Transcribing audio in background" not in st.session_state.statistics_text:
st.markdown(st.session_state.statistics_text + "\n\n---\n") # Format with line if showing statistics
else:
st.markdown(st.session_state.statistics_text)
else:
placeholder.empty()
if submitted:
if input_method == "Upload audio file" and audio_file is None:
st.error("Please upload an audio file")
elif input_method == "YouTube link" and not youtube_link:
st.error("Please enter a YouTube link")
else:
st.session_state.button_disabled = True
# Show temporary message before transcription is generated and statistics show
audio_file_path = None
if input_method == "YouTube link":
display_status("Downloading audio from YouTube link ....")
audio_file_path = download_video_audio(youtube_link, display_download_status)
if audio_file_path is None:
st.error("Failed to download audio from YouTube link. Please try again.")
enable()
clear_status()
else:
# Read the downloaded file and create a file-like objec
display_status("Processing Youtube audio ....")
with open(audio_file_path, 'rb') as f:
file_contents = f.read()
audio_file = BytesIO(file_contents)
# Check size first to ensure will work with Whisper
if os.path.getsize(audio_file_path) > MAX_FILE_SIZE:
raise ValueError(FILE_TOO_LARGE_MESSAGE)
audio_file.name = os.path.basename(audio_file_path) # Set the file name
delete_download(audio_file_path)
clear_download_status()
if not GROQ_API_KEY:
st.session_state.groq = Groq(api_key=groq_input_key)
display_status("Transcribing audio in background....")
transcription_text = transcribe_audio(audio_file)
display_statistics()
display_status("Generating notes structure....")
large_model_generation_statistics, notes_structure = generate_notes_structure(transcription_text, model=str(outline_selected_model))
print("Structure: ",notes_structure)
display_status("Generating notes ...")
total_generation_statistics = GenerationStatistics(model_name="llama3-8b-8192")
clear_status()
try:
notes_structure_json = json.loads(notes_structure)
notes = NoteSection(structure=notes_structure_json,transcript=transcription_text)
if 'notes' not in st.session_state:
st.session_state.notes = notes
st.session_state.notes.display_structure()
def stream_section_content(sections):
for title, content in sections.items():
if isinstance(content, str):
content_stream = generate_section(transcript=transcription_text, existing_notes=notes.return_existing_contents(), section=(title + ": " + content),model=str(content_selected_model))
for chunk in content_stream:
# Check if GenerationStatistics data is returned instead of str tokens
chunk_data = chunk
if type(chunk_data) == GenerationStatistics:
total_generation_statistics.add(chunk_data)
st.session_state.statistics_text = str(total_generation_statistics)
display_statistics()
elif chunk is not None:
st.session_state.notes.update_content(title, chunk)
elif isinstance(content, dict):
stream_section_content(content)
stream_section_content(notes_structure_json)
except json.JSONDecodeError:
st.error("Failed to decode the notes structure. Please try again.")
enable()
except Exception as e:
st.session_state.button_disabled = False
if hasattr(e, 'status_code') and e.status_code == 413:
# In the future, this limitation will be fixed as Groqnotes will automatically split the audio file and transcribe each part.
st.error(FILE_TOO_LARGE_MESSAGE)
else:
st.error(e)
if st.button("Clear"):
st.rerun()
# Remove audio after exception to prevent data storage leak
if audio_file_path is not None:
delete_download(audio_file_path) |