|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.utils import maybe_allow_in_graph |
|
from .attention_processor import Attention |
|
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings |
|
|
|
|
|
class GatedSelfAttentionDense(nn.Module): |
|
def __init__(self, query_dim, context_dim, n_heads, d_head): |
|
super().__init__() |
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) |
|
self.ff = FeedForward(query_dim, activation_fn="geglu") |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) |
|
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) |
|
|
|
self.enabled = True |
|
|
|
def forward(self, x, objs, fuser_attn_kwargs={}): |
|
if not self.enabled: |
|
return x |
|
|
|
n_visual = x.shape[1] |
|
objs = self.linear(objs) |
|
|
|
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)), **fuser_attn_kwargs)[:, :n_visual, :] |
|
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
@maybe_allow_in_graph |
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
final_dropout: bool = False, |
|
use_gated_attention: bool = False, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) |
|
|
|
|
|
if use_gated_attention: |
|
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
return_cross_attention_probs: bool = None, |
|
): |
|
|
|
|
|
|
|
if 'gligen' in cross_attention_kwargs: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
gligen_kwargs = cross_attention_kwargs.pop('gligen', None) |
|
else: |
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
gligen_kwargs = None |
|
|
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if gligen_kwargs is not None: |
|
|
|
hidden_states = self.fuser(hidden_states, gligen_kwargs['objs'], fuser_attn_kwargs=gligen_kwargs.get("fuser_attn_kwargs", {})) |
|
|
|
|
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
return_attntion_probs=return_cross_attention_probs, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
if return_cross_attention_probs: |
|
attn_output, cross_attention_probs = attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
if return_cross_attention_probs and self.attn2 is not None: |
|
return hidden_states, cross_attention_probs |
|
return hidden_states |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh") |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(nn.Linear(inner_dim, dim_out)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states): |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GELU(nn.Module): |
|
r""" |
|
GELU activation function with tanh approximation support with `approximate="tanh"`. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out) |
|
self.approximate = approximate |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate, approximate=self.approximate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.proj(hidden_states) |
|
hidden_states = self.gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GEGLU(nn.Module): |
|
r""" |
|
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) |
|
return hidden_states * self.gelu(gate) |
|
|
|
|
|
class ApproximateGELU(nn.Module): |
|
""" |
|
The approximate form of Gaussian Error Linear Unit (GELU) |
|
|
|
For more details, see section 2: https://arxiv.org/abs/1606.08415 |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Norm layer modified to incorporate timestep embeddings. |
|
""" |
|
|
|
def __init__(self, embedding_dim, num_embeddings): |
|
super().__init__() |
|
self.emb = nn.Embedding(num_embeddings, embedding_dim) |
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) |
|
|
|
def forward(self, x, timestep): |
|
emb = self.linear(self.silu(self.emb(timestep))) |
|
scale, shift = torch.chunk(emb, 2) |
|
x = self.norm(x) * (1 + scale) + shift |
|
return x |
|
|
|
|
|
class AdaLayerNormZero(nn.Module): |
|
""" |
|
Norm layer adaptive layer norm zero (adaLN-Zero). |
|
""" |
|
|
|
def __init__(self, embedding_dim, num_embeddings): |
|
super().__init__() |
|
|
|
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) |
|
|
|
def forward(self, x, timestep, class_labels, hidden_dtype=None): |
|
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) |
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] |
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp |
|
|
|
|