|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.utils import deprecate, logging, maybe_allow_in_graph |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
@maybe_allow_in_graph |
|
class Attention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
cross_attention_norm_num_groups: int = 32, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
spatial_norm_dim: Optional[int] = None, |
|
out_bias: bool = True, |
|
scale_qk: bool = True, |
|
only_cross_attention: bool = False, |
|
eps: float = 1e-5, |
|
rescale_output_factor: float = 1.0, |
|
residual_connection: bool = False, |
|
_from_deprecated_attn_block=False, |
|
processor: Optional["AttnProcessor"] = None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.rescale_output_factor = rescale_output_factor |
|
self.residual_connection = residual_connection |
|
|
|
|
|
|
|
self._from_deprecated_attn_block = _from_deprecated_attn_block |
|
|
|
self.scale_qk = scale_qk |
|
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 |
|
|
|
self.heads = heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
self.only_cross_attention = only_cross_attention |
|
|
|
if self.added_kv_proj_dim is None and self.only_cross_attention: |
|
raise ValueError( |
|
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." |
|
) |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
if spatial_norm_dim is not None: |
|
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) |
|
else: |
|
self.spatial_norm = None |
|
|
|
if cross_attention_norm is None: |
|
self.norm_cross = None |
|
elif cross_attention_norm == "layer_norm": |
|
self.norm_cross = nn.LayerNorm(cross_attention_dim) |
|
elif cross_attention_norm == "group_norm": |
|
if self.added_kv_proj_dim is not None: |
|
|
|
|
|
|
|
|
|
|
|
norm_cross_num_channels = added_kv_proj_dim |
|
else: |
|
norm_cross_num_channels = cross_attention_dim |
|
|
|
self.norm_cross = nn.GroupNorm( |
|
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True |
|
) |
|
else: |
|
raise ValueError( |
|
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" |
|
) |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
|
|
if not self.only_cross_attention: |
|
|
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
else: |
|
self.to_k = None |
|
self.to_v = None |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, inner_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, inner_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim, bias=out_bias)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
|
|
|
if processor is None: |
|
|
|
|
|
|
|
|
|
processor = AttnProcessor() |
|
self.set_processor(processor) |
|
|
|
def set_processor(self, processor: "AttnProcessor"): |
|
|
|
|
|
if ( |
|
hasattr(self, "processor") |
|
and isinstance(self.processor, torch.nn.Module) |
|
and not isinstance(processor, torch.nn.Module) |
|
): |
|
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") |
|
self._modules.pop("processor") |
|
|
|
self.processor = processor |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, return_attntion_probs=False, **cross_attention_kwargs): |
|
|
|
|
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
return_attntion_probs=return_attntion_probs, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def batch_to_head_dim(self, tensor): |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def head_to_batch_dim(self, tensor, out_dim=3): |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3) |
|
|
|
if out_dim == 3: |
|
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) |
|
|
|
return tensor |
|
|
|
def get_attention_scores(self, query, key, attention_mask=None): |
|
dtype = query.dtype |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
del baddbmm_input |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
del attention_scores |
|
|
|
attention_probs = attention_probs.to(dtype) |
|
|
|
return attention_probs |
|
|
|
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3): |
|
if batch_size is None: |
|
deprecate( |
|
"batch_size=None", |
|
"0.0.15", |
|
( |
|
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect" |
|
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to" |
|
" `prepare_attention_mask` when preparing the attention_mask." |
|
), |
|
) |
|
batch_size = 1 |
|
|
|
head_size = self.heads |
|
if attention_mask is None: |
|
return attention_mask |
|
|
|
current_length: int = attention_mask.shape[-1] |
|
if current_length != target_length: |
|
if attention_mask.device.type == "mps": |
|
|
|
|
|
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) |
|
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat([attention_mask, padding], dim=2) |
|
else: |
|
|
|
|
|
|
|
|
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
|
|
if out_dim == 3: |
|
if attention_mask.shape[0] < batch_size * head_size: |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) |
|
elif out_dim == 4: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) |
|
|
|
return attention_mask |
|
|
|
def norm_encoder_hidden_states(self, encoder_hidden_states): |
|
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" |
|
|
|
if isinstance(self.norm_cross, nn.LayerNorm): |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
elif isinstance(self.norm_cross, nn.GroupNorm): |
|
|
|
|
|
|
|
|
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
else: |
|
assert False |
|
|
|
return encoder_hidden_states |
|
|
|
|
|
class AttnProcessor: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call_fast__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
inner_dim = hidden_states.shape[-1] |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
head_dim = inner_dim // attn.heads |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
return_attntion_probs=False, |
|
attn_key=None, |
|
attn_process_fn=None, |
|
return_cond_ca_only=False, |
|
return_token_ca_only=None, |
|
offload_cross_attn_to_cpu=False, |
|
save_attn_to_dict=None, |
|
save_keys=None, |
|
enable_flash_attn=True, |
|
): |
|
""" |
|
attn_key: current key (a tuple of hierarchy index (up/mid/down, stage id, block id, sub-block id), sub block id should always be 0 in SD UNet) |
|
save_attn_to_dict: pass in a dict to save to dict |
|
""" |
|
cross_attn = encoder_hidden_states is not None |
|
|
|
if (not cross_attn) or ( |
|
(attn_process_fn is None) |
|
and not (save_attn_to_dict is not None and (save_keys is None or (tuple(attn_key) in save_keys))) |
|
and not return_attntion_probs): |
|
with torch.backends.cuda.sdp_kernel(enable_flash=enable_flash_attn, enable_math=True, enable_mem_efficient=enable_flash_attn): |
|
return self.__call_fast__(attn, hidden_states, encoder_hidden_states, attention_mask, temb) |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
|
if attn_process_fn is not None and cross_attn: |
|
attention_probs_before_process = attention_probs.clone() |
|
attention_probs = attn_process_fn(attention_probs, query, key, value, attn_key=attn_key, cross_attn=cross_attn, batch_size=batch_size, heads=attn.heads) |
|
else: |
|
attention_probs_before_process = attention_probs |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
if return_attntion_probs or save_attn_to_dict is not None: |
|
|
|
attention_probs_unflattened = attention_probs_before_process.unflatten(dim=0, sizes=(batch_size, attn.heads)) |
|
if return_token_ca_only is not None: |
|
|
|
if isinstance(return_token_ca_only, int): |
|
|
|
attention_probs_unflattened = attention_probs_unflattened[:, :, :, return_token_ca_only:return_token_ca_only+1] |
|
else: |
|
|
|
attention_probs_unflattened = attention_probs_unflattened[:, :, :, return_token_ca_only] |
|
if return_cond_ca_only: |
|
assert batch_size % 2 == 0, f"Samples are not in pairs: {batch_size} samples" |
|
attention_probs_unflattened = attention_probs_unflattened[batch_size // 2:] |
|
if offload_cross_attn_to_cpu: |
|
attention_probs_unflattened = attention_probs_unflattened.cpu() |
|
if save_attn_to_dict is not None and (save_keys is None or (tuple(attn_key) in save_keys)): |
|
save_attn_to_dict[tuple(attn_key)] = attention_probs_unflattened |
|
if return_attntion_probs: |
|
return hidden_states, attention_probs_unflattened |
|
return hidden_states |
|
|
|
|
|
AttentionProcessor = AttnProcessor |
|
|
|
class SpatialNorm(nn.Module): |
|
""" |
|
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
f_channels, |
|
zq_channels, |
|
): |
|
super().__init__() |
|
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) |
|
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) |
|
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, f, zq): |
|
f_size = f.shape[-2:] |
|
zq = F.interpolate(zq, size=f_size, mode="nearest") |
|
norm_f = self.norm_layer(f) |
|
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) |
|
return new_f |
|
|