|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.embeddings import ImagePositionalEmbeddings |
|
from diffusers.utils import BaseOutput, deprecate |
|
from .attention import BasicTransformerBlock |
|
from diffusers.models.embeddings import PatchEmbed |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
|
|
@dataclass |
|
class Transformer2DModelOutput(BaseOutput): |
|
""" |
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): |
|
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions |
|
for the unnoised latent pixels. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class Transformer2DModel(ModelMixin, ConfigMixin): |
|
""" |
|
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual |
|
embeddings) inputs. |
|
|
|
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard |
|
transformer action. Finally, reshape to image. |
|
|
|
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional |
|
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict |
|
classes of unnoised image. |
|
|
|
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised |
|
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
Pass if the input is continuous. The number of channels in the input and output. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. |
|
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. |
|
Note that this is fixed at training time as it is used for learning a number of position embeddings. See |
|
`ImagePositionalEmbeddings`. |
|
num_vector_embeds (`int`, *optional*): |
|
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. |
|
The number of diffusion steps used during training. Note that this is fixed at training time as it is used |
|
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for |
|
up to but not more than steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the TransformerBlocks' attention should contain a bias parameter. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
use_gated_attention: bool = False, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
|
|
self.is_input_continuous = (in_channels is not None) and (patch_size is None) |
|
self.is_input_vectorized = num_vector_embeds is not None |
|
self.is_input_patches = in_channels is not None and patch_size is not None |
|
|
|
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: |
|
deprecation_message = ( |
|
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" |
|
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config." |
|
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" |
|
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" |
|
" would be very nice if you could open a Pull request for the `transformer/config.json` file" |
|
) |
|
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) |
|
norm_type = "ada_norm" |
|
|
|
if self.is_input_continuous and self.is_input_vectorized: |
|
raise ValueError( |
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" |
|
" sure that either `in_channels` or `num_vector_embeds` is None." |
|
) |
|
elif self.is_input_vectorized and self.is_input_patches: |
|
raise ValueError( |
|
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" |
|
" sure that either `num_vector_embeds` or `num_patches` is None." |
|
) |
|
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: |
|
raise ValueError( |
|
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" |
|
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." |
|
) |
|
|
|
|
|
if self.is_input_continuous: |
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" |
|
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" |
|
|
|
self.height = sample_size |
|
self.width = sample_size |
|
self.num_vector_embeds = num_vector_embeds |
|
self.num_latent_pixels = self.height * self.width |
|
|
|
self.latent_image_embedding = ImagePositionalEmbeddings( |
|
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width |
|
) |
|
elif self.is_input_patches: |
|
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size" |
|
|
|
self.height = sample_size |
|
self.width = sample_size |
|
|
|
self.patch_size = patch_size |
|
self.pos_embed = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
use_gated_attention=use_gated_attention, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
if self.is_input_continuous: |
|
|
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
else: |
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
self.norm_out = nn.LayerNorm(inner_dim) |
|
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) |
|
elif self.is_input_patches: |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) |
|
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
return_cross_attention_probs: bool = False, |
|
): |
|
""" |
|
Args: |
|
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. |
|
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input |
|
hidden_states |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Optional class labels to be applied as an embedding in AdaLayerZeroNorm. Used to indicate class labels |
|
conditioning. |
|
encoder_attention_mask ( `torch.Tensor`, *optional* ). |
|
Cross-attention mask, applied to encoder_hidden_states. Two formats supported: |
|
Mask `(batch, sequence_length)` True = keep, False = discard. Bias `(batch, 1, sequence_length)` 0 |
|
= keep, -10000 = discard. |
|
If ndim == 2: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`: |
|
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.is_input_continuous: |
|
batch, _, height, width = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
elif self.is_input_vectorized: |
|
hidden_states = self.latent_image_embedding(hidden_states) |
|
elif self.is_input_patches: |
|
hidden_states = self.pos_embed(hidden_states) |
|
|
|
base_attn_key = cross_attention_kwargs["attn_key"] |
|
|
|
|
|
cross_attention_probs_all = [] |
|
for block_ind, block in enumerate(self.transformer_blocks): |
|
cross_attention_kwargs["attn_key"] = base_attn_key + [block_ind] |
|
|
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
return_cross_attention_probs=return_cross_attention_probs, |
|
) |
|
if return_cross_attention_probs: |
|
hidden_states, cross_attention_probs = hidden_states |
|
cross_attention_probs_all.append(cross_attention_probs) |
|
|
|
|
|
if self.is_input_continuous: |
|
if not self.use_linear_projection: |
|
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
output = hidden_states + residual |
|
elif self.is_input_vectorized: |
|
hidden_states = self.norm_out(hidden_states) |
|
logits = self.out(hidden_states) |
|
|
|
logits = logits.permute(0, 2, 1) |
|
|
|
|
|
output = F.log_softmax(logits.double(), dim=1).float() |
|
elif self.is_input_patches: |
|
|
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
hidden_states = self.proj_out_2(hidden_states) |
|
|
|
|
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
|
|
if len(cross_attention_probs_all) == 1: |
|
|
|
cross_attention_probs_all = cross_attention_probs_all[0] |
|
|
|
if not return_dict: |
|
if return_cross_attention_probs: |
|
return (output, cross_attention_probs_all) |
|
return (output,) |
|
|
|
output = Transformer2DModelOutput(sample=output) |
|
if return_cross_attention_probs: |
|
return output, cross_attention_probs_all |
|
return output |
|
|