michaelj's picture
change height
355bcf8
raw
history blame
7.42 kB
from app_settings import AppSettings
from utils import show_system_info
import constants
from argparse import ArgumentParser
from context import Context
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings
import traceback
from fastapi import FastAPI,Body
import uvicorn
import json
import logging
from PIL import Image
import time
from diffusers.utils import load_image
import base64
import io
from datetime import datetime
from typing import Any
from backend.models.lcmdiffusion_setting import DiffusionTask
from frontend.utils import is_reshape_required
from concurrent.futures import ThreadPoolExecutor
context = Context(InterfaceType.WEBUI)
previous_width = 0
previous_height = 0
previous_model_id = ""
previous_num_of_images = 0
# parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
# parser.add_argument(
# "-s",
# "--share",
# action="store_true",
# help="Create sharable link(Web UI)",
# required=False,
# )
# group = parser.add_mutually_exclusive_group(required=False)
# group.add_argument(
# "-g",
# "--gui",
# action="store_true",
# help="Start desktop GUI",
# )
# group.add_argument(
# "-w",
# "--webui",
# action="store_true",
# help="Start Web UI",
# )
# group.add_argument(
# "-r",
# "--realtime",
# action="store_true",
# help="Start realtime inference UI(experimental)",
# )
# group.add_argument(
# "-v",
# "--version",
# action="store_true",
# help="Version",
# )
# parser.add_argument(
# "--lcm_model_id",
# type=str,
# help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7",
# default="SimianLuo/LCM_Dreamshaper_v7",
# )
# parser.add_argument(
# "--prompt",
# type=str,
# help="Describe the image you want to generate",
# )
# parser.add_argument(
# "--image_height",
# type=int,
# help="Height of the image",
# default=512,
# )
# parser.add_argument(
# "--image_width",
# type=int,
# help="Width of the image",
# default=512,
# )
# parser.add_argument(
# "--inference_steps",
# type=int,
# help="Number of steps,default : 4",
# default=4,
# )
# parser.add_argument(
# "--guidance_scale",
# type=int,
# help="Guidance scale,default : 1.0",
# default=1.0,
# )
# parser.add_argument(
# "--number_of_images",
# type=int,
# help="Number of images to generate ,default : 1",
# default=1,
# )
# parser.add_argument(
# "--seed",
# type=int,
# help="Seed,default : -1 (disabled) ",
# default=-1,
# )
# parser.add_argument(
# "--use_openvino",
# action="store_true",
# help="Use OpenVINO model",
# )
# parser.add_argument(
# "--use_offline_model",
# action="store_true",
# help="Use offline model",
# )
# parser.add_argument(
# "--use_safety_checker",
# action="store_false",
# help="Use safety checker",
# )
# parser.add_argument(
# "--use_lcm_lora",
# action="store_true",
# help="Use LCM-LoRA",
# )
# parser.add_argument(
# "--base_model_id",
# type=str,
# help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
# default="Lykon/dreamshaper-8",
# )
# parser.add_argument(
# "--lcm_lora_id",
# type=str,
# help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
# default="latent-consistency/lcm-lora-sdv1-5",
# )
# parser.add_argument(
# "-i",
# "--interactive",
# action="store_true",
# help="Interactive CLI mode",
# )
# parser.add_argument(
# "--use_tiny_auto_encoder",
# action="store_true",
# help="Use tiny auto encoder for SD (TAESD)",
# )
# args = parser.parse_args()
# if args.version:
# print(APP_VERSION)
# exit()
# parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
app_settings = get_settings()
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
app_settings.settings.lcm_diffusion_setting.use_openvino = True
# from frontend.webui.ui import start_webui
# print("Starting web UI mode")
# start_webui(
# args.share,
# )
app = FastAPI(name="mutilParam")
print("我执行了")
@app.get("/")
def root():
return {"API": "hello"}
@app.post("/img2img")
async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)):
MAX_QUEUE_SIZE = 4
start = time.time()
print("参数",imgbase64data,prompt)
image_data = base64.b64decode(imgbase64data)
image1 = Image.open(io.BytesIO(image_data))
w, h = image1.size
newW = 512
newH = int(h * newW / w)
img = image1.resize((newW, newH))
end1 = time.time()
now = datetime.now()
print(now)
print("图像:", img.size)
print("加载管道:", end1 - start)
global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
app_settings.settings.lcm_diffusion_setting.prompt = prompt
app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt
app_settings.settings.lcm_diffusion_setting.init_image = image1
app_settings.settings.lcm_diffusion_setting.strength = 0.6
app_settings.settings.lcm_diffusion_setting.diffusion_task = (
DiffusionTask.image_to_image.value
)
model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
reshape = False
# app_settings.settings.lcm_diffusion_setting.image_height=newH
image_width = app_settings.settings.lcm_diffusion_setting.image_width
image_height = app_settings.settings.lcm_diffusion_setting.image_height
num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
reshape = is_reshape_required(
previous_width,
image_width,
previous_height,
image_height,
previous_model_id,
model_id,
previous_num_of_images,
num_images,
)
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(
context.generate_text_to_image,
app_settings.settings,
reshape,
DEVICE,
)
images = future.result()
previous_width = image_width
previous_height = image_height
previous_model_id = model_id
previous_num_of_images = num_images
output_image = images[0]
end2 = time.time()
print("测试",output_image)
print("s生成完成:", end2 - end1)
# 将图片对象转换为bytes
image_data = io.BytesIO()
# 将图像保存到BytesIO对象中,格式为JPEG
output_image.save(image_data, format='JPEG')
# 将BytesIO对象的内容转换为字节串
image_data_bytes = image_data.getvalue()
output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8')
print("完成的图片:", output_image_base64)
return output_image_base64
@app.post("/predict")
async def predict(prompt=Body(...)):
return f"您好,{prompt}"