FastAPI_lcm_docker / frontend /webui /text_to_image_ui.py
michaelj's picture
Upload folder using huggingface_hub
e23d4ed
import gradio as gr
from typing import Any
from backend.models.lcmdiffusion_setting import DiffusionTask
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings, get_context
from frontend.utils import is_reshape_required
from concurrent.futures import ThreadPoolExecutor
from pprint import pprint
app_settings = get_settings()
context = get_context(InterfaceType.WEBUI)
previous_width = 0
previous_height = 0
previous_model_id = ""
previous_num_of_images = 0
def generate_text_to_image(
prompt,
neg_prompt,
) -> Any:
global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
app_settings.settings.lcm_diffusion_setting.prompt = prompt
app_settings.settings.lcm_diffusion_setting.negative_prompt = neg_prompt
app_settings.settings.lcm_diffusion_setting.diffusion_task = (
DiffusionTask.text_to_image.value
)
model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
reshape = False
image_width = app_settings.settings.lcm_diffusion_setting.image_width
image_height = app_settings.settings.lcm_diffusion_setting.image_height
num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
if app_settings.settings.lcm_diffusion_setting.use_openvino:
reshape = is_reshape_required(
previous_width,
image_width,
previous_height,
image_height,
previous_model_id,
model_id,
previous_num_of_images,
num_images,
)
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(
context.generate_text_to_image,
app_settings.settings,
reshape,
DEVICE,
)
images = future.result()
# images = context.generate_text_to_image(
# app_settings.settings,
# reshape,
# DEVICE,
# )
previous_width = image_width
previous_height = image_height
previous_model_id = model_id
previous_num_of_images = num_images
return images
def get_text_to_image_ui() -> None:
with gr.Blocks():
with gr.Row():
with gr.Column():
with gr.Row():
prompt = gr.Textbox(
show_label=False,
lines=3,
placeholder="A fantasy landscape",
container=False,
)
generate_btn = gr.Button(
"Generate",
elem_id="generate_button",
scale=0,
)
negative_prompt = gr.Textbox(
label="Negative prompt (Works in LCM-LoRA mode, set guidance > 1.0) :",
lines=1,
placeholder="",
)
input_params = [prompt, negative_prompt]
with gr.Column():
output = gr.Gallery(
label="Generated images",
show_label=True,
elem_id="gallery",
columns=2,
height=512,
)
generate_btn.click(
fn=generate_text_to_image,
inputs=input_params,
outputs=output,
)