Spaces:
Sleeping
Sleeping
add model
Browse files- constants.py +211 -0
- model.py +43 -0
- requirements.txt +4 -2
- utils.py +15 -0
constants.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DESCRIPTION = """
|
2 |
+
# Real Time Latent Consistency Model
|
3 |
+
|
4 |
+
This space is using a **CPU runtime**, and it takes about 30 seconds to generate an image.
|
5 |
+
For a faster experience, you can duplicate it and use with a **GPU runtime**.
|
6 |
+
|
7 |
+
At the meantime you can use **[dynamic 🔥](https://www.fal.ai/dynamic)** by [fal](fal.ai), or **[a hosted space 🤗](https://huggingface.co/spaces/fal-ai/realtime-stable-diffusion)**
|
8 |
+
to generate images in real time.
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
LOGO = """
|
13 |
+
<svg
|
14 |
+
width="100%"
|
15 |
+
height="100%"
|
16 |
+
viewBox="0 0 89 32"
|
17 |
+
fill="none"
|
18 |
+
xmlns="http://www.w3.org/2000/svg"
|
19 |
+
>
|
20 |
+
<path
|
21 |
+
d="M52.308 3.07812H57.8465V4.92428H56.0003V6.77043H54.1541V10.4627H57.8465V12.3089H54.1541V25.232H52.308V27.0781H46.7695V25.232H48.6157V12.3089H46.7695V10.4627H48.6157V6.77043H50.4618V4.92428H52.308V3.07812Z"
|
22 |
+
fill="currentColor"
|
23 |
+
></path>
|
24 |
+
<path
|
25 |
+
d="M79.3849 23.3858H81.2311V25.232H83.0772V27.0781H88.6157V25.232H86.7695V23.3858H84.9234V4.92428H79.3849V23.3858Z"
|
26 |
+
fill="currentColor"
|
27 |
+
></path>
|
28 |
+
<path
|
29 |
+
d="M57.8465 14.155H59.6926V12.3089H61.5388V10.4627H70.7695V12.3089H74.4618V23.3858H76.308V25.232H78.1541V27.0781H72.6157V25.232H70.7695V23.3858H68.9234V14.155H67.0772V12.3089H65.2311V14.155H63.3849V23.3858H65.2311V25.232H67.0772V27.0781H61.5388V25.232H59.6926V23.3858H57.8465V14.155Z"
|
30 |
+
fill="currentColor"
|
31 |
+
></path>
|
32 |
+
<path
|
33 |
+
d="M67.0772 25.232V23.3858H68.9234V25.232H67.0772Z"
|
34 |
+
fill="currentColor"
|
35 |
+
></path>
|
36 |
+
<rect
|
37 |
+
opacity="0.22"
|
38 |
+
x="7.38477"
|
39 |
+
y="29.5391"
|
40 |
+
width="2.46154"
|
41 |
+
height="2.46154"
|
42 |
+
fill="#5F4CD9"
|
43 |
+
></rect>
|
44 |
+
<rect
|
45 |
+
opacity="0.85"
|
46 |
+
x="2.46094"
|
47 |
+
y="19.6914"
|
48 |
+
width="12.3077"
|
49 |
+
height="2.46154"
|
50 |
+
fill="#5F4CD9"
|
51 |
+
></rect>
|
52 |
+
<rect
|
53 |
+
x="4.92383"
|
54 |
+
y="17.2305"
|
55 |
+
width="9.84615"
|
56 |
+
height="2.46154"
|
57 |
+
fill="#5F4CD9"
|
58 |
+
></rect>
|
59 |
+
<rect
|
60 |
+
opacity="0.4"
|
61 |
+
x="7.38477"
|
62 |
+
y="27.0781"
|
63 |
+
width="4.92308"
|
64 |
+
height="2.46154"
|
65 |
+
fill="#5F4CD9"
|
66 |
+
></rect>
|
67 |
+
<rect
|
68 |
+
opacity="0.7"
|
69 |
+
y="22.1562"
|
70 |
+
width="14.7692"
|
71 |
+
height="2.46154"
|
72 |
+
fill="#5F4CD9"
|
73 |
+
></rect>
|
74 |
+
<rect
|
75 |
+
opacity="0.5"
|
76 |
+
x="7.38477"
|
77 |
+
y="24.6133"
|
78 |
+
width="7.38462"
|
79 |
+
height="2.46154"
|
80 |
+
fill="#5F4CD9"
|
81 |
+
></rect>
|
82 |
+
<rect
|
83 |
+
opacity="0.22"
|
84 |
+
x="7.38477"
|
85 |
+
y="12.3086"
|
86 |
+
width="2.46154"
|
87 |
+
height="2.46154"
|
88 |
+
fill="#5F4CD9"
|
89 |
+
></rect>
|
90 |
+
<rect
|
91 |
+
opacity="0.85"
|
92 |
+
x="2.46094"
|
93 |
+
y="2.46094"
|
94 |
+
width="12.3077"
|
95 |
+
height="2.46154"
|
96 |
+
fill="#5F4CD9"
|
97 |
+
></rect>
|
98 |
+
<rect x="4.92383" width="9.84615" height="2.46154" fill="#5F4CD9"></rect>
|
99 |
+
<rect
|
100 |
+
opacity="0.4"
|
101 |
+
x="7.38477"
|
102 |
+
y="9.84375"
|
103 |
+
width="4.92308"
|
104 |
+
height="2.46154"
|
105 |
+
fill="#5F4CD9"
|
106 |
+
></rect>
|
107 |
+
<rect
|
108 |
+
opacity="0.7"
|
109 |
+
y="4.92188"
|
110 |
+
width="14.7692"
|
111 |
+
height="2.46154"
|
112 |
+
fill="#5F4CD9"
|
113 |
+
></rect>
|
114 |
+
<rect
|
115 |
+
opacity="0.5"
|
116 |
+
x="7.38477"
|
117 |
+
y="7.38281"
|
118 |
+
width="7.38462"
|
119 |
+
height="2.46154"
|
120 |
+
fill="#5F4CD9"
|
121 |
+
></rect>
|
122 |
+
<rect
|
123 |
+
opacity="0.22"
|
124 |
+
x="24.6152"
|
125 |
+
y="29.5391"
|
126 |
+
width="2.46154"
|
127 |
+
height="2.46154"
|
128 |
+
fill="#5F4CD9"
|
129 |
+
></rect>
|
130 |
+
<rect
|
131 |
+
opacity="0.85"
|
132 |
+
x="19.6914"
|
133 |
+
y="19.6914"
|
134 |
+
width="12.3077"
|
135 |
+
height="2.46154"
|
136 |
+
fill="#5F4CD9"
|
137 |
+
></rect>
|
138 |
+
<rect
|
139 |
+
x="22.1543"
|
140 |
+
y="17.2305"
|
141 |
+
width="9.84615"
|
142 |
+
height="2.46154"
|
143 |
+
fill="#5F4CD9"
|
144 |
+
></rect>
|
145 |
+
<rect
|
146 |
+
opacity="0.4"
|
147 |
+
x="24.6152"
|
148 |
+
y="27.0781"
|
149 |
+
width="4.92308"
|
150 |
+
height="2.46154"
|
151 |
+
fill="#5F4CD9"
|
152 |
+
></rect>
|
153 |
+
<rect
|
154 |
+
opacity="0.7"
|
155 |
+
x="17.2305"
|
156 |
+
y="22.1562"
|
157 |
+
width="14.7692"
|
158 |
+
height="2.46154"
|
159 |
+
fill="#5F4CD9"
|
160 |
+
></rect>
|
161 |
+
<rect
|
162 |
+
opacity="0.5"
|
163 |
+
x="24.6152"
|
164 |
+
y="24.6133"
|
165 |
+
width="7.38462"
|
166 |
+
height="2.46154"
|
167 |
+
fill="#5F4CD9"
|
168 |
+
></rect>
|
169 |
+
<rect
|
170 |
+
opacity="0.22"
|
171 |
+
x="24.6152"
|
172 |
+
y="12.3086"
|
173 |
+
width="2.46154"
|
174 |
+
height="2.46154"
|
175 |
+
fill="#5F4CD9"
|
176 |
+
></rect>
|
177 |
+
<rect
|
178 |
+
opacity="0.85"
|
179 |
+
x="19.6914"
|
180 |
+
y="2.46094"
|
181 |
+
width="12.3077"
|
182 |
+
height="2.46154"
|
183 |
+
fill="#5F4CD9"
|
184 |
+
></rect>
|
185 |
+
<rect x="22.1543" width="9.84615" height="2.46154" fill="#5F4CD9"></rect>
|
186 |
+
<rect
|
187 |
+
opacity="0.4"
|
188 |
+
x="24.6152"
|
189 |
+
y="9.84375"
|
190 |
+
width="4.92308"
|
191 |
+
height="2.46154"
|
192 |
+
fill="#5F4CD9"
|
193 |
+
></rect>
|
194 |
+
<rect
|
195 |
+
opacity="0.7"
|
196 |
+
x="17.2305"
|
197 |
+
y="4.92188"
|
198 |
+
width="14.7692"
|
199 |
+
height="2.46154"
|
200 |
+
fill="#5F4CD9"
|
201 |
+
></rect>
|
202 |
+
<rect
|
203 |
+
opacity="0.5"
|
204 |
+
x="24.6152"
|
205 |
+
y="7.38281"
|
206 |
+
width="7.38462"
|
207 |
+
height="2.46154"
|
208 |
+
fill="#5F4CD9"
|
209 |
+
></rect>
|
210 |
+
</svg>
|
211 |
+
"""
|
model.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
|
4 |
+
def get_pipeline():
|
5 |
+
import torch
|
6 |
+
from diffusers import AutoencoderTiny, AutoPipelineForImage2Image
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
+
|
11 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
12 |
+
"SimianLuo/LCM_Dreamshaper_v7",
|
13 |
+
use_safetensors=True,
|
14 |
+
)
|
15 |
+
pipe.vae = AutoencoderTiny.from_pretrained(
|
16 |
+
"madebyollin/taesd",
|
17 |
+
torch_dtype=torch_dtype,
|
18 |
+
use_safetensors=True,
|
19 |
+
)
|
20 |
+
pipe = pipe.to(device, dtype=torch_dtype)
|
21 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
22 |
+
return pipe
|
23 |
+
|
24 |
+
|
25 |
+
def get_test_pipeline():
|
26 |
+
from PIL import Image
|
27 |
+
from dataclasses import dataclass
|
28 |
+
import random
|
29 |
+
import time
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class Images:
|
33 |
+
images: list[Image.Image]
|
34 |
+
|
35 |
+
class Pipeline:
|
36 |
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
37 |
+
r = random.randint(0, 255)
|
38 |
+
g = random.randint(0, 255)
|
39 |
+
b = random.randint(0, 255)
|
40 |
+
|
41 |
+
return Images(images=[Image.new("RGB", (512, 512), color=(r, g, b))])
|
42 |
+
|
43 |
+
return Pipeline()
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
diffusers[torch]
|
3 |
+
transformers
|
4 |
+
xformers
|
utils.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def replace_background(image: Image.Image, new_background_color=(0, 255, 255)):
|
6 |
+
image_np = np.array(image)
|
7 |
+
|
8 |
+
white_threshold = 255 * 3
|
9 |
+
white_pixels = np.sum(image_np, axis=-1) == white_threshold
|
10 |
+
|
11 |
+
image_np[white_pixels] = new_background_color
|
12 |
+
|
13 |
+
result = Image.fromarray(image_np)
|
14 |
+
|
15 |
+
return result
|