michaelj commited on
Commit
f208512
·
1 Parent(s): 99f940b
Files changed (1) hide show
  1. main.py +13 -19
main.py CHANGED
@@ -25,44 +25,38 @@ def root():
25
 
26
  @app.post("/img2img")
27
  async def predict(prompt=Body(...),imgbase64data=Body(...)):
 
28
  MAX_QUEUE_SIZE = 4
29
  start = time.time()
30
- pipeline = get_pipeline()
31
-
32
- url = "https://img2.baidu.com/it/u=1845675188,2679793929&fm=253&fmt=auto&app=138&f=JPEG?w=667&h=500"
33
- prompt = "a nice Comfortable and clean. According to Baidu Education Information, the adjectives for a room include: comfortable, clean, beautiful, spacious, warm, quiet, luxurious, pleasant, exquisite, and warm ,colorful, light room width sofa,8k"
34
-
35
- init_image = load_image(url).convert("RGB")
36
- # image1 = replace_background(init_image.resize((256, 256)))
37
- w, h = init_image.size
38
- newW = 512
39
  newH = int(h * newW / w)
40
-
41
- img = init_image.resize((newW, newH))
42
  end1 = time.time()
 
 
 
43
  print("加载管道:", end1 - start)
44
  result = pipeline(
45
  prompt=prompt,
46
- image=img,
47
  strength=0.6,
48
  seed=10,
49
- width=512,
50
- height=512,
51
  guidance_scale=1,
52
  num_inference_steps=4,
53
  )
54
  output_image = result.images[0]
55
  end2 = time.time()
56
  print("测试",output_image)
57
- print("s生成完成:", end2 - end1)
58
- end2 = time.time()
59
- print("测试",output_image)
60
  print("s生成完成:", end2 - end1)
61
  # 将图片对象转换为bytes
62
- end3 = time.time()
63
  output_image_base64 = base64.b64encode(output_image.tobytes()).decode()
64
  print("完成的图片:", output_image_base64)
65
- print("图像转换时间:", end3 - end2)
66
  return output_image_base64
67
 
68
 
 
25
 
26
  @app.post("/img2img")
27
  async def predict(prompt=Body(...),imgbase64data=Body(...)):
28
+ pipeline = get_pipeline()
29
  MAX_QUEUE_SIZE = 4
30
  start = time.time()
31
+ print("参数",imgbase64data,prompt)
32
+ image_data = base64.b64decode(imgbase64data)
33
+ image1 = Image.open(io.BytesIO(image_data))
34
+ w, h = image1.size
35
+ newW = 256
 
 
 
 
36
  newH = int(h * newW / w)
37
+ img = image1.resize((newW, newH))
 
38
  end1 = time.time()
39
+ now = datetime.now()
40
+ print(now)
41
+ print("图像:", img.size)
42
  print("加载管道:", end1 - start)
43
  result = pipeline(
44
  prompt=prompt,
45
+ image=image1,
46
  strength=0.6,
47
  seed=10,
48
+ width=256,
49
+ height=256,
50
  guidance_scale=1,
51
  num_inference_steps=4,
52
  )
53
  output_image = result.images[0]
54
  end2 = time.time()
55
  print("测试",output_image)
 
 
 
56
  print("s生成完成:", end2 - end1)
57
  # 将图片对象转换为bytes
 
58
  output_image_base64 = base64.b64encode(output_image.tobytes()).decode()
59
  print("完成的图片:", output_image_base64)
 
60
  return output_image_base64
61
 
62