File size: 9,553 Bytes
a12b8d1
d08dc68
ff49a48
 
 
 
a12b8d1
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08dc68
a12b8d1
 
 
 
 
 
d08dc68
a12b8d1
 
 
 
 
ff49a48
a12b8d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08dc68
ff49a48
 
 
 
 
a12b8d1
ff49a48
 
 
 
 
 
a12b8d1
 
 
 
ff49a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from dataclasses import dataclass
from typing import Dict, Optional

import torch
import torch.nn.functional as F
from einops import rearrange, reduce
from torchmcubes import marching_cubes

from ..utils import (
    BaseModule,
    chunk_batch,
    get_activation,
    rays_intersect_bbox,
    scale_tensor,
)


class TriplaneNeRFRenderer(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        radius: float

        feature_reduction: str = "concat"
        density_activation: str = "trunc_exp"
        density_bias: float = -1.0
        color_activation: str = "sigmoid"
        num_samples_per_ray: int = 128
        randomized: bool = False

    cfg: Config

    def configure(self) -> None:
        assert self.cfg.feature_reduction in ["concat", "mean"]
        self.chunk_size = 0

    def set_chunk_size(self, chunk_size: int):
        assert (
            chunk_size >= 0
        ), "chunk_size must be a non-negative integer (0 for no chunking)."
        self.chunk_size = chunk_size

    def interpolate_triplane(self, triplane: torch.Tensor, resolution: int):
        coords = torch.linspace(-1.0, 1.0, resolution, device = triplane.device)
        x, y = torch.meshgrid(coords, coords, indexing="ij")
        verts2D = torch.cat([x.view(resolution, resolution,1), y.view(resolution, resolution,1)], dim = -1)
        verts2D = verts2D.expand(3, -1, -1, -1)
        return F.grid_sample(triplane, verts2D, align_corners=False,mode="bilinear") # [3 40 H W] xy xz yz

    def block_based_marchingcube(self, decoder: torch.nn.Module, triplane: torch.Tensor, resolution: int, threshold, block_resolution = 128) -> torch.Tensor:
        resolution += 1 # sample 1 more line of density, 1024 + 1 == 1025, 0 mapping to -1.0f, 512 mapping to 0.0f, 1025 mapping to 1.0f,  for better floating point precision.
        block_size = 2.0 * block_resolution / (resolution - 1)
        voxel_size = block_size / block_resolution
        interpolated = self.interpolate_triplane(triplane, resolution)

        pos_list = []
        indices_list = []
        for x in range(0, resolution - 1, block_resolution):
            size_x = resolution - x if x + block_resolution >= resolution else block_resolution + 1 # sample 1 more line of density, so marching cubes resolution match block_resolution
            for y in range(0, resolution - 1, block_resolution):
                size_y = resolution - y if y + block_resolution >= resolution else block_resolution + 1
                for z in range(0, resolution - 1, block_resolution):
                    size_z = resolution - z if z + block_resolution >= resolution else block_resolution + 1
                    xyplane = interpolated[0:1, :, x:x+size_x, y:y+size_y].expand(size_z, -1, -1, -1, -1).permute(3, 4, 0, 1, 2)
                    xzplane = interpolated[1:2, :, x:x+size_x, z:z+size_z].expand(size_y, -1, -1, -1, -1).permute(3, 0, 4, 1, 2)
                    yzplane = interpolated[2:3, :, y:y+size_y, z:z+size_z].expand(size_x, -1, -1, -1, -1).permute(0, 3, 4, 1, 2)
                    sz = size_x * size_y * size_z
                    out = torch.cat([xyplane, xzplane, yzplane], dim=3).view(sz, 3, -1)

                    if self.cfg.feature_reduction == "concat":
                        out = out.view(sz, -1)
                    elif self.cfg.feature_reduction == "mean":
                        out = reduce(out, "N Np Cp -> N Cp", Np=3, reduction="mean")
                    else:
                        raise NotImplementedError
                    net_out = decoder(out)
                    out = None # discard samples
                    density = net_out["density"]
                    net_out = None # discard colors
                    density = get_activation(self.cfg.density_activation)(density + self.cfg.density_bias).view(size_x, size_y, size_z)
                    try: # now do the marching cube
                        v_pos, indices = marching_cubes(density.detach(), threshold)
                    except AttributeError:
                        print("torchmcubes was not compiled with CUDA support, use CPU version instead.")
                        v_pos, indices = self.mc_func(density.detach().cpu(), 0.0)
                    offset = torch.tensor([x * voxel_size - 1.0, y * voxel_size - 1.0, z * voxel_size - 1.0], device = triplane.device)
                    v_pos = v_pos[..., [2, 1, 0]] * voxel_size + offset
                    
                    indices_list.append(indices)
                    pos_list.append(v_pos)
                    
        vertex_count = 0
        for i in range(0, len(pos_list)):
            indices_list[i] += vertex_count
            vertex_count += pos_list[i].size(0)
        
        return torch.cat(pos_list), torch.cat(indices_list)

    def query_triplane(
        self,
        decoder: torch.nn.Module,
        positions: torch.Tensor,
        triplane: torch.Tensor,
        scale_pos = True
    ) -> Dict[str, torch.Tensor]:
        input_shape = positions.shape[:-1]
        positions = positions.view(-1, 3)

        # positions in (-radius, radius)
        # normalized to (-1, 1) for grid sample
        if scale_pos:
            positions = scale_tensor(
                positions, (-self.cfg.radius, self.cfg.radius), (-1, 1)
            )

        def _query_chunk(x):
            indices2D: torch.Tensor = torch.stack(
                (x[..., [0, 1]], x[..., [0, 2]], x[..., [1, 2]]),
                dim=-3,
            )
            out: torch.Tensor = F.grid_sample(
                rearrange(triplane, "Np Cp Hp Wp -> Np Cp Hp Wp", Np=3),
                rearrange(indices2D, "Np N Nd -> Np () N Nd", Np=3),
                align_corners=False,
                mode="bilinear",
            )
            if self.cfg.feature_reduction == "concat":
                out = rearrange(out, "Np Cp () N -> N (Np Cp)", Np=3)
            elif self.cfg.feature_reduction == "mean":
                out = reduce(out, "Np Cp () N -> N Cp", Np=3, reduction="mean")
            else:
                raise NotImplementedError

            net_out: Dict[str, torch.Tensor] = decoder(out)
            return net_out

        if self.chunk_size > 0:
            net_out = chunk_batch(_query_chunk, self.chunk_size, positions)
        else:
            net_out = _query_chunk(positions)

        net_out["density_act"] = get_activation(self.cfg.density_activation)(
            net_out["density"] + self.cfg.density_bias
        )
        net_out["color"] = get_activation(self.cfg.color_activation)(
            net_out["features"]
        )

        net_out = {k: v.view(*input_shape, -1) for k, v in net_out.items()}

        return net_out

    def _forward(
        self,
        decoder: torch.nn.Module,
        triplane: torch.Tensor,
        rays_o: torch.Tensor,
        rays_d: torch.Tensor,
        **kwargs,
    ):
        rays_shape = rays_o.shape[:-1]
        rays_o = rays_o.view(-1, 3)
        rays_d = rays_d.view(-1, 3)
        n_rays = rays_o.shape[0]

        t_near, t_far, rays_valid = rays_intersect_bbox(rays_o, rays_d, self.cfg.radius)
        t_near, t_far = t_near[rays_valid], t_far[rays_valid]

        t_vals = torch.linspace(
            0, 1, self.cfg.num_samples_per_ray + 1, device=triplane.device
        )
        t_mid = (t_vals[:-1] + t_vals[1:]) / 2.0
        z_vals = t_near * (1 - t_mid[None]) + t_far * t_mid[None]  # (N_rays, N_samples)

        xyz = (
            rays_o[:, None, :] + z_vals[..., None] * rays_d[..., None, :]
        )  # (N_rays, N_sample, 3)

        mlp_out = self.query_triplane(
            decoder=decoder,
            positions=xyz,
            triplane=triplane,
        )

        eps = 1e-10
        # deltas = z_vals[:, 1:] - z_vals[:, :-1] # (N_rays, N_samples)
        deltas = t_vals[1:] - t_vals[:-1]  # (N_rays, N_samples)
        alpha = 1 - torch.exp(
            -deltas * mlp_out["density_act"][..., 0]
        )  # (N_rays, N_samples)
        accum_prod = torch.cat(
            [
                torch.ones_like(alpha[:, :1]),
                torch.cumprod(1 - alpha[:, :-1] + eps, dim=-1),
            ],
            dim=-1,
        )
        weights = alpha * accum_prod  # (N_rays, N_samples)
        comp_rgb_ = (weights[..., None] * mlp_out["color"]).sum(dim=-2)  # (N_rays, 3)
        opacity_ = weights.sum(dim=-1)  # (N_rays)

        comp_rgb = torch.zeros(
            n_rays, 3, dtype=comp_rgb_.dtype, device=comp_rgb_.device
        )
        opacity = torch.zeros(n_rays, dtype=opacity_.dtype, device=opacity_.device)
        comp_rgb[rays_valid] = comp_rgb_
        opacity[rays_valid] = opacity_

        comp_rgb += 1 - opacity[..., None]
        comp_rgb = comp_rgb.view(*rays_shape, 3)

        return comp_rgb

    def forward(
        self,
        decoder: torch.nn.Module,
        triplane: torch.Tensor,
        rays_o: torch.Tensor,
        rays_d: torch.Tensor,
    ) -> Dict[str, torch.Tensor]:
        if triplane.ndim == 4:
            comp_rgb = self._forward(decoder, triplane, rays_o, rays_d)
        else:
            comp_rgb = torch.stack(
                [
                    self._forward(decoder, triplane[i], rays_o[i], rays_d[i])
                    for i in range(triplane.shape[0])
                ],
                dim=0,
            )

        return comp_rgb

    def train(self, mode=True):
        self.randomized = mode and self.cfg.randomized
        return super().train(mode=mode)

    def eval(self):
        self.randomized = False
        return super().eval()