File size: 6,057 Bytes
8fb085a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from typing import Any, List, Dict, Literal, Optional
from argparse import ArgumentParser
import threading
import cv2
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer

import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.typing import Frame, Face, Update_Process, ProcessMode, ModelValue, OptionsWithModel
from facefusion.utilities import conditional_download, resolve_relative_path, is_file, is_download_done, map_device, create_metavar, update_status
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices

FRAME_PROCESSOR = None
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
MODELS: Dict[str, ModelValue] =\
{
	'real_esrgan_x2plus':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x2plus.pth',
		'path': resolve_relative_path('../.assets/models/real_esrgan_x2plus.pth'),
		'scale': 2
	},
	'real_esrgan_x4plus':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x4plus.pth',
		'path': resolve_relative_path('../.assets/models/real_esrgan_x4plus.pth'),
		'scale': 4
	},
	'real_esrnet_x4plus':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrnet_x4plus.pth',
		'path': resolve_relative_path('../.assets/models/real_esrnet_x4plus.pth'),
		'scale': 4
	}
}
OPTIONS : Optional[OptionsWithModel] = None


def get_frame_processor() -> Any:
	global FRAME_PROCESSOR

	with THREAD_LOCK:
		if FRAME_PROCESSOR is None:
			model_path = get_options('model').get('path')
			model_scale = get_options('model').get('scale')
			FRAME_PROCESSOR = RealESRGANer(
				model_path = model_path,
				model = RRDBNet(
					num_in_ch = 3,
					num_out_ch = 3,
					scale = model_scale
				),
				device = map_device(facefusion.globals.execution_providers),
				scale = model_scale
			)
	return FRAME_PROCESSOR


def clear_frame_processor() -> None:
	global FRAME_PROCESSOR

	FRAME_PROCESSOR = None


def get_options(key : Literal['model']) -> Any:
	global OPTIONS

	if OPTIONS is None:
		OPTIONS =\
		{
			'model': MODELS[frame_processors_globals.frame_enhancer_model]
		}
	return OPTIONS.get(key)


def set_options(key : Literal['model'], value : Any) -> None:
	global OPTIONS

	OPTIONS[key] = value


def register_args(program : ArgumentParser) -> None:
	program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'frame_enhancer_model', default = 'real_esrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models)
	program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'frame_enhancer_blend', type = int, default = 80, choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range))


def apply_args(program : ArgumentParser) -> None:
	args = program.parse_args()
	frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model
	frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend


def pre_check() -> bool:
	if not facefusion.globals.skip_download:
		download_directory_path = resolve_relative_path('../.assets/models')
		model_url = get_options('model').get('url')
		conditional_download(download_directory_path, [ model_url ])
	return True


def pre_process(mode : ProcessMode) -> bool:
	model_url = get_options('model').get('url')
	model_path = get_options('model').get('path')
	if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
		update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
		return False
	elif not is_file(model_path):
		update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
		return False
	if mode == 'output' and not facefusion.globals.output_path:
		update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
		return False
	return True


def post_process() -> None:
	clear_frame_processor()
	clear_face_analyser()
	clear_content_analyser()
	read_static_image.cache_clear()


def enhance_frame(temp_frame : Frame) -> Frame:
	with THREAD_SEMAPHORE:
		paste_frame, _ = get_frame_processor().enhance(temp_frame)
		temp_frame = blend_frame(temp_frame, paste_frame)
	return temp_frame


def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame:
	frame_enhancer_blend = 1 - (frame_processors_globals.frame_enhancer_blend / 100)
	paste_frame_height, paste_frame_width = paste_frame.shape[0:2]
	temp_frame = cv2.resize(temp_frame, (paste_frame_width, paste_frame_height))
	temp_frame = cv2.addWeighted(temp_frame, frame_enhancer_blend, paste_frame, 1 - frame_enhancer_blend, 0)
	return temp_frame


def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
	return enhance_frame(temp_frame)


def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
	for temp_frame_path in temp_frame_paths:
		temp_frame = read_image(temp_frame_path)
		result_frame = process_frame(None, None, temp_frame)
		write_image(temp_frame_path, result_frame)
		update_progress()


def process_image(source_path : str, target_path : str, output_path : str) -> None:
	target_frame = read_static_image(target_path)
	result = process_frame(None, None, target_frame)
	write_image(output_path, result)


def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
	frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)