File size: 759 Bytes
360d274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
from diffusers import DiffusionPipeline, LCMScheduler
import torch
def get_lcm_lora_pipeline(
base_model_id: str,
lcm_lora_id: str,
use_local_model: bool,
torch_data_type: torch.dtype,
):
pipeline = DiffusionPipeline.from_pretrained(
base_model_id,
torch_dtype=torch_data_type,
local_files_only=use_local_model,
)
pipeline.load_lora_weights(
lcm_lora_id,
local_files_only=use_local_model,
)
if "lcm" in lcm_lora_id.lower():
print("LCM LoRA model detected so using recommended LCMScheduler")
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
pipeline.fuse_lora()
pipeline.unet.to(memory_format=torch.channels_last)
return pipeline
|