File size: 64,607 Bytes
2de5b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

import imp
import numpy as np
import cv2
import torch
import random
from PIL import Image, ImageDraw, ImageFont
import copy
from typing import Optional, Union, Tuple, List, Callable, Dict, Any
from tqdm.notebook import tqdm
from diffusers.utils import BaseOutput, logging
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.unet_2d_blocks import (
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    UpBlock2D,
    get_down_block,
    get_up_block,
)
from diffusers.models.unet_2d_condition import UNet2DConditionOutput, logger
from copy import deepcopy
import json

import inspect
import os
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import is_compiled_module

from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from tqdm import tqdm
from controlnet_aux import HEDdetector, OpenposeDetector
import time

def seed_everything(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)

def get_promptls(prompt_path):
    with open(prompt_path) as f:
        prompt_ls = json.load(f)
    prompt_ls = [prompt['caption'].replace('/','_') for prompt in prompt_ls]
    return prompt_ls

def load_512(image_path, left=0, right=0, top=0, bottom=0):
    # print(image_path)
    if type(image_path) is str:
        image = np.array(Image.open(image_path))
        if image.ndim>3:
            image = image[:,:,:3]
        elif image.ndim == 2:
            image = image.reshape(image.shape[0], image.shape[1],1).astype('uint8')
    else:
        image = image_path
    h, w, c = image.shape
    left = min(left, w-1)
    right = min(right, w - left - 1)
    top = min(top, h - left - 1)
    bottom = min(bottom, h - top - 1)
    image = image[top:h-bottom, left:w-right]
    h, w, c = image.shape
    if h < w:
        offset = (w - h) // 2
        image = image[:, offset:offset + h]
    elif w < h:
        offset = (h - w) // 2
        image = image[offset:offset + w]
    image = np.array(Image.fromarray(image).resize((512, 512)))
    return image

def get_canny(image_path):
    image = load_512(
        image_path
    )
    image = np.array(image)

    # get canny image
    image = cv2.Canny(image, 100, 200)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    canny_image = Image.fromarray(image)
    return canny_image


def get_scribble(image_path, hed):
    image = load_512(
        image_path
    )
    image = hed(image, scribble=True)

    return image

def get_cocoimages(prompt_path):
    data_ls = []
    with open(prompt_path) as f:
        prompt_ls = json.load(f)
    img_path = 'COCO2017-val/val2017'
    for prompt in tqdm(prompt_ls):
        caption = prompt['caption'].replace('/','_')
        image_id = str(prompt['image_id'])
        image_id = (12-len(image_id))*'0' + image_id+'.jpg'
        image_path = os.path.join(img_path, image_id)
        try:
            image = get_canny(image_path)
        except:
            continue
        curr_data = {'image':image, 'prompt':caption}
        data_ls.append(curr_data)
    return data_ls

def get_cocoimages2(prompt_path):
    """scribble condition
    """
    data_ls = []
    with open(prompt_path) as f:
        prompt_ls = json.load(f)
    img_path = 'COCO2017-val/val2017'
    hed = HEDdetector.from_pretrained('ControlNet/detector_weights/annotator', filename='network-bsds500.pth')
    for prompt in tqdm(prompt_ls):
        caption = prompt['caption'].replace('/','_')
        image_id = str(prompt['image_id'])
        image_id = (12-len(image_id))*'0' + image_id+'.jpg'
        image_path = os.path.join(img_path, image_id)
        try:
            image = get_scribble(image_path,hed)
        except:
            continue
        curr_data = {'image':image, 'prompt':caption}
        data_ls.append(curr_data)
    return data_ls

def warpped_feature(sample, step):
    """
    sample: batch_size*dim*h*w, uncond: 0 - batch_size//2, cond: batch_size//2 - batch_size
    step: timestep span
    """
    bs, dim, h, w = sample.shape
    uncond_fea, cond_fea = sample.chunk(2)
    uncond_fea = uncond_fea.repeat(step,1,1,1) # (step * bs//2) * dim * h *w
    cond_fea = cond_fea.repeat(step,1,1,1) # (step * bs//2) * dim * h *w
    return torch.cat([uncond_fea, cond_fea])

def warpped_skip_feature(block_samples, step):
    down_block_res_samples = []
    for sample in block_samples:
        sample_expand = warpped_feature(sample, step)
        down_block_res_samples.append(sample_expand)
    return tuple(down_block_res_samples)

def warpped_text_emb(text_emb, step):
    """
    text_emb: batch_size*77*768, uncond: 0 - batch_size//2, cond: batch_size//2 - batch_size
    step: timestep span
    """
    bs, token_len, dim = text_emb.shape
    uncond_fea, cond_fea = text_emb.chunk(2)
    uncond_fea = uncond_fea.repeat(step,1,1) # (step * bs//2) * 77 *768
    cond_fea = cond_fea.repeat(step,1,1) # (step * bs//2) * 77 * 768
    return torch.cat([uncond_fea, cond_fea]) # (step*bs) * 77 *768

def warpped_timestep(timesteps, bs):
    """
    timestpes: list, such as [981, 961, 941]
    """
    semi_bs = bs//2
    ts = []
    for timestep in timesteps:
        timestep = timestep[None]
        texp = timestep.expand(semi_bs)
        ts.append(texp)
    timesteps = torch.cat(ts)
    return timesteps.repeat(2,1).reshape(-1)

def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg

def register_normal_pipeline(pipe):
    def new_call(self):
        @torch.no_grad()
        def call(
            prompt: Union[str, List[str]] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            guidance_rescale: float = 0.0,
            clip_skip: Optional[int] = None,
            callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
            callback_on_step_end_tensor_inputs: List[str] = ["latents"],
            **kwargs,
        ):

            callback = kwargs.pop("callback", None)
            callback_steps = kwargs.pop("callback_steps", None)


            # 0. Default height and width to unet
            height = height or self.unet.config.sample_size * self.vae_scale_factor
            width = width or self.unet.config.sample_size * self.vae_scale_factor
            # to deal with lora scaling and other possible forward hooks

            # 1. Check inputs. Raise error if not correct
            self.check_inputs(
                prompt,
                height,
                width,
                callback_steps,
                negative_prompt,
                prompt_embeds,
                negative_prompt_embeds,
                callback_on_step_end_tensor_inputs,
            )

            self._guidance_scale = guidance_scale
            self._guidance_rescale = guidance_rescale
            self._clip_skip = clip_skip
            self._cross_attention_kwargs = cross_attention_kwargs

            # 2. Define call parameters
            if prompt is not None and isinstance(prompt, str):
                batch_size = 1
            elif prompt is not None and isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                batch_size = prompt_embeds.shape[0]

            device = self._execution_device

            # 3. Encode input prompt
            lora_scale = (
                self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
            )

            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                prompt,
                device,
                num_images_per_prompt,
                self.do_classifier_free_guidance,
                negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                lora_scale=lora_scale,
                clip_skip=self.clip_skip,
            )
            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            if self.do_classifier_free_guidance:
                prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

            # 4. Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

            # 5. Prepare latent variables
            num_channels_latents = self.unet.config.in_channels
            latents = self.prepare_latents(
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height,
                width,
                prompt_embeds.dtype,
                device,
                generator,
                latents,
            )

            # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
            extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

            # 6.5 Optionally get Guidance Scale Embedding
            timestep_cond = None
            if self.unet.config.time_cond_proj_dim is not None:
                guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
                timestep_cond = self.get_guidance_scale_embedding(
                    guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
                ).to(device=device, dtype=latents.dtype)

            # 7. Denoising loop
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            self._num_timesteps = len(timesteps)
            init_latents = latents.detach().clone()
            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    if t/1000 < 0.5:
                        latents = latents + 0.003*init_latents
                    setattr(self.unet, 'order', i)
                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        timestep_cond=timestep_cond,
                        cross_attention_kwargs=self.cross_attention_kwargs,
                        return_dict=False,
                    )[0]

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                    if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                        # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                        noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                        latents = callback_outputs.pop("latents", latents)
                        prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                        negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            step_idx = i // getattr(self.scheduler, "order", 1)
                            callback(step_idx, t, latents)

            if not output_type == "latent":
                image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                    0
                ]
                image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
            else:
                image = latents
                has_nsfw_concept = None

            if has_nsfw_concept is None:
                do_denormalize = [True] * image.shape[0]
            else:
                do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

            image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

            # Offload all models
            self.maybe_free_model_hooks()

            if not return_dict:
                return (image, has_nsfw_concept)

            return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
        return call
    pipe.call = new_call(pipe)


def register_parallel_pipeline(pipe):
    def new_call(self):
        @torch.no_grad()
        def call(
            prompt: Union[str, List[str]] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            guidance_rescale: float = 0.0,
            clip_skip: Optional[int] = None,
            callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
            callback_on_step_end_tensor_inputs: List[str] = ["latents"],
            **kwargs,
        ):

            callback = kwargs.pop("callback", None)
            callback_steps = kwargs.pop("callback_steps", None)


            # 0. Default height and width to unet
            height = height or self.unet.config.sample_size * self.vae_scale_factor
            width = width or self.unet.config.sample_size * self.vae_scale_factor
            # to deal with lora scaling and other possible forward hooks

            # 1. Check inputs. Raise error if not correct
            self.check_inputs(
                prompt,
                height,
                width,
                callback_steps,
                negative_prompt,
                prompt_embeds,
                negative_prompt_embeds,
                callback_on_step_end_tensor_inputs,
            )

            self._guidance_scale = guidance_scale
            self._guidance_rescale = guidance_rescale
            self._clip_skip = clip_skip
            self._cross_attention_kwargs = cross_attention_kwargs

            # 2. Define call parameters
            if prompt is not None and isinstance(prompt, str):
                batch_size = 1
            elif prompt is not None and isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                batch_size = prompt_embeds.shape[0]

            device = self._execution_device

            # 3. Encode input prompt
            lora_scale = (
                self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
            )

            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                prompt,
                device,
                num_images_per_prompt,
                self.do_classifier_free_guidance,
                negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                lora_scale=lora_scale,
                clip_skip=self.clip_skip,
            )
            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            if self.do_classifier_free_guidance:
                prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

            # 4. Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

            # 5. Prepare latent variables
            num_channels_latents = self.unet.config.in_channels
            latents = self.prepare_latents(
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height,
                width,
                prompt_embeds.dtype,
                device,
                generator,
                latents,
            )

            # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
            extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

            # 6.5 Optionally get Guidance Scale Embedding
            timestep_cond = None
            if self.unet.config.time_cond_proj_dim is not None:
                guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
                timestep_cond = self.get_guidance_scale_embedding(
                    guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
                ).to(device=device, dtype=latents.dtype)

            # 7. Denoising loop
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            self._num_timesteps = len(timesteps)
            init_latents = latents.detach().clone()
            #-------------------------------------------------------
            all_steps = len(self.scheduler.timesteps)
            curr_span = 1
            curr_step = 0

            # st = time.time()
            idx = 1
            keytime = [0,1,2,3,5,10,15,25,35]
            keytime.append(all_steps)
            while curr_step<all_steps:
                refister_time(self.unet, curr_step)

                merge_span = curr_span
                if merge_span>0:
                    time_ls = []
                    for i in range(curr_step, curr_step+merge_span):
                        if i<all_steps:
                            time_ls.append(self.scheduler.timesteps[i])
                        else:
                            break

                    ##--------------------------------
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        time_ls,
                        encoder_hidden_states=prompt_embeds,
                        timestep_cond=timestep_cond,
                        cross_attention_kwargs=self.cross_attention_kwargs,
                        return_dict=False,
                    )[0]

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                    if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                        # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                        noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                    # compute the previous noisy sample x_t -> x_t-1

                    step_span = len(time_ls)
                    bs = noise_pred.shape[0]
                    bs_perstep = bs//step_span

                    denoised_latent = latents
                    for i, timestep in enumerate(time_ls):
                        if timestep/1000 < 0.5:
                            denoised_latent = denoised_latent + 0.003*init_latents
                        curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep]
                        denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0]
                    
                    latents = denoised_latent
                    ##----------------------------------------
                curr_step += curr_span
                idx += 1

                if curr_step<all_steps:
                    curr_span = keytime[idx] - keytime[idx-1] 

           
            if not output_type == "latent":
                image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                    0
                ]
                image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
            else:
                image = latents
                has_nsfw_concept = None

            if has_nsfw_concept is None:
                do_denormalize = [True] * image.shape[0]
            else:
                do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

            image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

            # Offload all models
            self.maybe_free_model_hooks()

            if not return_dict:
                return (image, has_nsfw_concept)

            return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
        return call
    pipe.call = new_call(pipe)

def register_faster_forward(model, mod = '50ls'):
    def faster_forward(self):
        def forward(
                sample: torch.FloatTensor,
                timestep: Union[torch.Tensor, float, int],
                encoder_hidden_states: torch.Tensor,
                class_labels: Optional[torch.Tensor] = None,
                timestep_cond: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                cross_attention_kwargs: Optional[Dict[str, Any]] = None,
                down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
                mid_block_additional_residual: Optional[torch.Tensor] = None,
                return_dict: bool = True,
            ) -> Union[UNet2DConditionOutput, Tuple]:
                r"""
                Args:
                    sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
                    timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
                    encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
                    return_dict (`bool`, *optional*, defaults to `True`):
                        Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
                    cross_attention_kwargs (`dict`, *optional*):
                        A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                        `self.processor` in
                        [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).

                Returns:
                    [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
                    [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
                    returning a tuple, the first element is the sample tensor.
                """
                # By default samples have to be AT least a multiple of the overall upsampling factor.
                # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
                # However, the upsampling interpolation output size can be forced to fit any upsampling size
                # on the fly if necessary.
                default_overall_up_factor = 2**self.num_upsamplers

                # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
                forward_upsample_size = False
                upsample_size = None

                if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
                    logger.info("Forward upsample size to force interpolation output size.")
                    forward_upsample_size = True

                # prepare attention_mask
                if attention_mask is not None:
                    attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
                    attention_mask = attention_mask.unsqueeze(1)

                # 0. center input if necessary
                if self.config.center_input_sample:
                    sample = 2 * sample - 1.0

                # 1. time
                if isinstance(timestep, list):
                    timesteps = timestep[0]
                    step = len(timestep)
                else:
                    timesteps = timestep
                    step = 1
                if not torch.is_tensor(timesteps) and (not isinstance(timesteps,list)):
                    # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                    # This would be a good case for the `match` statement (Python 3.10+)
                    is_mps = sample.device.type == "mps"
                    if isinstance(timestep, float):
                        dtype = torch.float32 if is_mps else torch.float64
                    else:
                        dtype = torch.int32 if is_mps else torch.int64
                    timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
                elif (not isinstance(timesteps,list)) and len(timesteps.shape) == 0:
                    timesteps = timesteps[None].to(sample.device)
                
                if (not isinstance(timesteps,list)) and len(timesteps.shape) == 1:
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                    timesteps = timesteps.expand(sample.shape[0])
                elif isinstance(timesteps, list):
                    #timesteps list, such as [981,961,941]
                    timesteps = warpped_timestep(timesteps, sample.shape[0]).to(sample.device)
                t_emb = self.time_proj(timesteps)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # but time_embedding might actually be running in fp16. so we need to cast here.
                # there might be better ways to encapsulate this.
                t_emb = t_emb.to(dtype=self.dtype)

                emb = self.time_embedding(t_emb, timestep_cond)

                if self.class_embedding is not None:
                    if class_labels is None:
                        raise ValueError("class_labels should be provided when num_class_embeds > 0")

                    if self.config.class_embed_type == "timestep":
                        class_labels = self.time_proj(class_labels)

                        # `Timesteps` does not contain any weights and will always return f32 tensors
                        # there might be better ways to encapsulate this.
                        class_labels = class_labels.to(dtype=sample.dtype)

                    class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)

                    if self.config.class_embeddings_concat:
                        emb = torch.cat([emb, class_emb], dim=-1)
                    else:
                        emb = emb + class_emb

                if self.config.addition_embed_type == "text":
                    aug_emb = self.add_embedding(encoder_hidden_states)
                    emb = emb + aug_emb

                if self.time_embed_act is not None:
                    emb = self.time_embed_act(emb)

                if self.encoder_hid_proj is not None:
                    encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)

                #===============
                order = self.order #timestep, start by 0
                #===============
                ipow = int(np.sqrt(9 + 8*order))
                cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35]
                if isinstance(mod, int):
                    cond = order % mod == 0
                elif mod == "pro":
                    cond = ipow * ipow == (9 + 8 * order)
                elif mod == "50ls":
                    cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
                elif mod == "50ls2":
                    cond = order in [0, 10, 11, 12, 15, 20, 25, 30,35,45] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
                elif mod == "50ls3":
                    cond = order in [0, 20, 25, 30,35,45,46,47,48,49] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
                elif mod == "50ls4":
                    cond = order in [0, 9, 13, 14, 15, 28, 29, 32, 36,45] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
                elif mod == "100ls":
                    cond = order > 85 or order < 10 or order % 5 == 0
                elif mod == "75ls":
                    cond = order > 65 or order < 10 or order % 5 == 0
                elif mod == "s2":
                    cond = order < 20 or order > 40 or order % 2 == 0

                if cond:
                    print(order)
                    # 2. pre-process
                    sample = self.conv_in(sample)

                    # 3. down
                    down_block_res_samples = (sample,)
                    for downsample_block in self.down_blocks:
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                            sample, res_samples = downsample_block(
                                hidden_states=sample,
                                temb=emb,
                                encoder_hidden_states=encoder_hidden_states,
                                attention_mask=attention_mask,
                                cross_attention_kwargs=cross_attention_kwargs,
                            )
                        else:
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

                        down_block_res_samples += res_samples

                    if down_block_additional_residuals is not None:
                        new_down_block_res_samples = ()

                        for down_block_res_sample, down_block_additional_residual in zip(
                            down_block_res_samples, down_block_additional_residuals
                        ):
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
                            new_down_block_res_samples += (down_block_res_sample,)

                        down_block_res_samples = new_down_block_res_samples

                    # 4. mid
                    if self.mid_block is not None:
                        sample = self.mid_block(
                            sample,
                            emb,
                            encoder_hidden_states=encoder_hidden_states,
                            attention_mask=attention_mask,
                            cross_attention_kwargs=cross_attention_kwargs,
                        )

                    if mid_block_additional_residual is not None:
                        sample = sample + mid_block_additional_residual

                    #----------------------save feature-------------------------
                    # setattr(self, 'skip_feature', (tmp_sample.clone() for tmp_sample in down_block_res_samples))
                    setattr(self, 'skip_feature', deepcopy(down_block_res_samples))
                    setattr(self, 'toup_feature', sample.detach().clone())
                    #-----------------------save feature------------------------



                    #-------------------expand feature for parallel---------------
                    if isinstance(timestep, list):
                        #timesteps list, such as [981,961,941]
                        timesteps = warpped_timestep(timestep, sample.shape[0]).to(sample.device)
                        t_emb = self.time_proj(timesteps)

                        # `Timesteps` does not contain any weights and will always return f32 tensors
                        # but time_embedding might actually be running in fp16. so we need to cast here.
                        # there might be better ways to encapsulate this.
                        t_emb = t_emb.to(dtype=self.dtype)

                        emb = self.time_embedding(t_emb, timestep_cond)
                        # print(emb.shape)

                    # print(step, sample.shape)
                    down_block_res_samples = warpped_skip_feature(down_block_res_samples, step)
                    sample = warpped_feature(sample, step)
                    # print(step, sample.shape)

                    encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step)

                    # print(emb.shape)

                    #-------------------expand feature for parallel---------------
                    
                else:
                    down_block_res_samples = self.skip_feature
                    sample = self.toup_feature

                    #-------------------expand feature for parallel---------------
                    down_block_res_samples = warpped_skip_feature(down_block_res_samples, step)
                    sample = warpped_feature(sample, step)
                    encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step)
                    #-------------------expand feature for parallel---------------

                # 5. up
                for i, upsample_block in enumerate(self.up_blocks):
                    is_final_block = i == len(self.up_blocks) - 1

                    res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
                    down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

                    # if we have not reached the final block and need to forward the
                    # upsample size, we do it here
                    if not is_final_block and forward_upsample_size:
                        upsample_size = down_block_res_samples[-1].shape[2:]

                    if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                        sample = upsample_block(
                            hidden_states=sample,
                            temb=emb,
                            res_hidden_states_tuple=res_samples,
                            encoder_hidden_states=encoder_hidden_states,
                            cross_attention_kwargs=cross_attention_kwargs,
                            upsample_size=upsample_size,
                            attention_mask=attention_mask,
                        )
                    else:
                        sample = upsample_block(
                            hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                        )

                # 6. post-process
                if self.conv_norm_out:
                    sample = self.conv_norm_out(sample)
                    sample = self.conv_act(sample)
                sample = self.conv_out(sample)

                if not return_dict:
                    return (sample,)

                return UNet2DConditionOutput(sample=sample)
        return forward
    if model.__class__.__name__ == 'UNet2DConditionModel':
        model.forward = faster_forward(model)

def register_normal_forward(model):
    def normal_forward(self):
        def forward(
                sample: torch.FloatTensor,
                timestep: Union[torch.Tensor, float, int],
                encoder_hidden_states: torch.Tensor,
                class_labels: Optional[torch.Tensor] = None,
                timestep_cond: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                cross_attention_kwargs: Optional[Dict[str, Any]] = None,
                down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
                mid_block_additional_residual: Optional[torch.Tensor] = None,
                return_dict: bool = True,
            ) -> Union[UNet2DConditionOutput, Tuple]:
                # By default samples have to be AT least a multiple of the overall upsampling factor.
                # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
                # However, the upsampling interpolation output size can be forced to fit any upsampling size
                # on the fly if necessary.
                default_overall_up_factor = 2**self.num_upsamplers

                # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
                forward_upsample_size = False
                upsample_size = None
                #---------------------
                # import os
                # os.makedirs(f'{timestep.item()}_step', exist_ok=True)
                #---------------------
                if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
                    logger.info("Forward upsample size to force interpolation output size.")
                    forward_upsample_size = True

                # prepare attention_mask
                if attention_mask is not None:
                    attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
                    attention_mask = attention_mask.unsqueeze(1)

                # 0. center input if necessary
                if self.config.center_input_sample:
                    sample = 2 * sample - 1.0

                # 1. time
                timesteps = timestep
                if not torch.is_tensor(timesteps):
                    # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                    # This would be a good case for the `match` statement (Python 3.10+)
                    is_mps = sample.device.type == "mps"
                    if isinstance(timestep, float):
                        dtype = torch.float32 if is_mps else torch.float64
                    else:
                        dtype = torch.int32 if is_mps else torch.int64
                    timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
                elif len(timesteps.shape) == 0:
                    timesteps = timesteps[None].to(sample.device)

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timesteps = timesteps.expand(sample.shape[0])

                t_emb = self.time_proj(timesteps)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # but time_embedding might actually be running in fp16. so we need to cast here.
                # there might be better ways to encapsulate this.
                t_emb = t_emb.to(dtype=self.dtype)

                emb = self.time_embedding(t_emb, timestep_cond)

                if self.class_embedding is not None:
                    if class_labels is None:
                        raise ValueError("class_labels should be provided when num_class_embeds > 0")

                    if self.config.class_embed_type == "timestep":
                        class_labels = self.time_proj(class_labels)

                        # `Timesteps` does not contain any weights and will always return f32 tensors
                        # there might be better ways to encapsulate this.
                        class_labels = class_labels.to(dtype=sample.dtype)

                    class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)

                    if self.config.class_embeddings_concat:
                        emb = torch.cat([emb, class_emb], dim=-1)
                    else:
                        emb = emb + class_emb

                if self.config.addition_embed_type == "text":
                    aug_emb = self.add_embedding(encoder_hidden_states)
                    emb = emb + aug_emb

                if self.time_embed_act is not None:
                    emb = self.time_embed_act(emb)

                if self.encoder_hid_proj is not None:
                    encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)

                # 2. pre-process
                sample = self.conv_in(sample)

                # 3. down
                down_block_res_samples = (sample,)
                for i, downsample_block in enumerate(self.down_blocks):
                    if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                        sample, res_samples = downsample_block(
                            hidden_states=sample,
                            temb=emb,
                            encoder_hidden_states=encoder_hidden_states,
                            attention_mask=attention_mask,
                            cross_attention_kwargs=cross_attention_kwargs,
                        )
                    else:
                        sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
                    #---------------------------------
                    # torch.save(sample, f'{timestep.item()}_step/down_{i}.pt')
                    #----------------------------------
                    down_block_res_samples += res_samples

                if down_block_additional_residuals is not None:
                    new_down_block_res_samples = ()

                    for down_block_res_sample, down_block_additional_residual in zip(
                        down_block_res_samples, down_block_additional_residuals
                    ):
                        down_block_res_sample = down_block_res_sample + down_block_additional_residual
                        new_down_block_res_samples += (down_block_res_sample,)

                    down_block_res_samples = new_down_block_res_samples

                # 4. mid
                if self.mid_block is not None:
                    sample = self.mid_block(
                        sample,
                        emb,
                        encoder_hidden_states=encoder_hidden_states,
                        attention_mask=attention_mask,
                        cross_attention_kwargs=cross_attention_kwargs,
                    )
                    # torch.save(sample, f'{timestep.item()}_step/mid.pt')
                if mid_block_additional_residual is not None:
                    sample = sample + mid_block_additional_residual
                # 5. up
                for i, upsample_block in enumerate(self.up_blocks):
                    is_final_block = i == len(self.up_blocks) - 1

                    res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
                    down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

                    # if we have not reached the final block and need to forward the
                    # upsample size, we do it here
                    if not is_final_block and forward_upsample_size:
                        upsample_size = down_block_res_samples[-1].shape[2:]

                    if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                        sample = upsample_block(
                            hidden_states=sample,
                            temb=emb,
                            res_hidden_states_tuple=res_samples,
                            encoder_hidden_states=encoder_hidden_states,
                            cross_attention_kwargs=cross_attention_kwargs,
                            upsample_size=upsample_size,
                            attention_mask=attention_mask,
                        )
                    else:
                        sample = upsample_block(
                            hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                        )
                    #----------------------------
                    # torch.save(sample, f'{timestep.item()}_step/up_{i}.pt')
                    #----------------------------
                # 6. post-process
                if self.conv_norm_out:
                    sample = self.conv_norm_out(sample)
                    sample = self.conv_act(sample)
                sample = self.conv_out(sample)

                if not return_dict:
                    return (sample,)

                return UNet2DConditionOutput(sample=sample)
        return forward
    if model.__class__.__name__ == 'UNet2DConditionModel':
        model.forward = normal_forward(model)

def refister_time(unet, t):
    setattr(unet, 'order', t)



def register_controlnet_pipeline2(pipe):
    def new_call(self):
        @torch.no_grad()
        # @replace_example_docstring(EXAMPLE_DOC_STRING)
        def call(
            prompt: Union[str, List[str]] = None,
            image: Union[
                torch.FloatTensor,
                PIL.Image.Image,
                np.ndarray,
                List[torch.FloatTensor],
                List[PIL.Image.Image],
                List[np.ndarray],
            ] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
            callback_steps: int = 1,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
            guess_mode: bool = False,
        ):
            # 1. Check inputs. Raise error if not correct
            self.check_inputs(
                prompt,
                image,
                callback_steps,
                negative_prompt,
                prompt_embeds,
                negative_prompt_embeds,
                controlnet_conditioning_scale,
            )

            # 2. Define call parameters
            if prompt is not None and isinstance(prompt, str):
                batch_size = 1
            elif prompt is not None and isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                batch_size = prompt_embeds.shape[0]

            device = self._execution_device
            # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
            # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
            # corresponds to doing no classifier free guidance.
            do_classifier_free_guidance = guidance_scale > 1.0

            controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

            if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
                controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

            global_pool_conditions = (
                controlnet.config.global_pool_conditions
                if isinstance(controlnet, ControlNetModel)
                else controlnet.nets[0].config.global_pool_conditions
            )
            guess_mode = guess_mode or global_pool_conditions

            # 3. Encode input prompt
            text_encoder_lora_scale = (
                cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
            )
            prompt_embeds = self._encode_prompt(
                prompt,
                device,
                num_images_per_prompt,
                do_classifier_free_guidance,
                negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                lora_scale=text_encoder_lora_scale,
            )

            # 4. Prepare image
            if isinstance(controlnet, ControlNetModel):
                image = self.prepare_image(
                    image=image,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )
                height, width = image.shape[-2:]
            elif isinstance(controlnet, MultiControlNetModel):
                images = []

                for image_ in image:
                    image_ = self.prepare_image(
                        image=image_,
                        width=width,
                        height=height,
                        batch_size=batch_size * num_images_per_prompt,
                        num_images_per_prompt=num_images_per_prompt,
                        device=device,
                        dtype=controlnet.dtype,
                        do_classifier_free_guidance=do_classifier_free_guidance,
                        guess_mode=guess_mode,
                    )

                    images.append(image_)

                image = images
                height, width = image[0].shape[-2:]
            else:
                assert False

            # 5. Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

            # 6. Prepare latent variables
            num_channels_latents = self.unet.config.in_channels
            latents = self.prepare_latents(
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height,
                width,
                prompt_embeds.dtype,
                device,
                generator,
                latents,
            )
            self.init_latent = latents.detach().clone()
            # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
            extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

            # 8. Denoising loop
            #-------------------------------------------------------------
            all_steps = len(self.scheduler.timesteps)
            curr_span = 1
            curr_step = 0

            # st = time.time()
            idx = 1
            keytime = [0,1,2,3,5,10,15,25,35,50]
            
            while curr_step<all_steps:
                # torch.cuda.empty_cache()
                # print(curr_step)
                refister_time(self.unet, curr_step)

                merge_span = curr_span
                if merge_span>0:
                    time_ls = []
                    for i in range(curr_step, curr_step+merge_span):
                        if i<all_steps:
                            time_ls.append(self.scheduler.timesteps[i])
                        else:
                            break
                    # torch.cuda.empty_cache()

                    ##--------------------------------
                    latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, time_ls[0])
                    
                    if curr_step in [0,1,2,3,5,10,15,25,35]:
                        # controlnet(s) inference
                        control_model_input = latent_model_input
                        controlnet_prompt_embeds = prompt_embeds

                        down_block_res_samples, mid_block_res_sample = self.controlnet(
                            control_model_input,
                            time_ls[0],
                            encoder_hidden_states=controlnet_prompt_embeds,
                            controlnet_cond=image,
                            conditioning_scale=controlnet_conditioning_scale,
                            guess_mode=guess_mode,
                            return_dict=False,
                        )


                        #----------------------save controlnet feature-------------------------
                        #useless, shoule delete
                        # setattr(self, 'downres_samples', deepcopy(down_block_res_samples))
                        # setattr(self, 'midres_sample', mid_block_res_sample.detach().clone())
                        #-----------------------save controlnet feature------------------------
                    else:
                        down_block_res_samples = None #self.downres_samples
                        mid_block_res_sample = None #self.midres_sample
                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        time_ls,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                        down_block_additional_residuals=down_block_res_samples,
                        mid_block_additional_residual=mid_block_res_sample,
                        return_dict=False,
                    )[0]

                    # perform guidance
                    if do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1

                    if isinstance(time_ls, list):
                        step_span = len(time_ls)
                        bs = noise_pred.shape[0]
                        bs_perstep = bs//step_span

                        denoised_latent = latents
                        for i, timestep in enumerate(time_ls):
                            curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep]
                            denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0]
                        
                        latents = denoised_latent
                    ##----------------------------------------
                curr_step += curr_span
                idx += 1
                if curr_step<all_steps:
                    curr_span = keytime[idx] - keytime[idx-1]
            
            # for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):

            #-------------------------------------------------------------
                

            # If we do sequential model offloading, let's offload unet and controlnet
            # manually for max memory savings
            if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
                self.unet.to("cpu")
                self.controlnet.to("cpu")
                torch.cuda.empty_cache()

            if not output_type == "latent":
                image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
                image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
            else:
                image = latents
                has_nsfw_concept = None

            if has_nsfw_concept is None:
                do_denormalize = [True] * image.shape[0]
            else:
                do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

            image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

            # Offload last model to CPU
            if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
                self.final_offload_hook.offload()

            if not return_dict:
                return (image, has_nsfw_concept)

            return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
        return call
    pipe.call = new_call(pipe)

@torch.no_grad()
def multistep_pre(self, noise_pred, t, x):
    step_span = len(t)
    bs = noise_pred.shape[0]
    bs_perstep = bs//step_span

    denoised_latent = x
    for i, timestep in enumerate(t):
        curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep]
        denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent)['prev_sample']
    return denoised_latent

def register_t2v(model):
    def new_back(self):
        def backward_loop(
        latents,
        timesteps,
        prompt_embeds,
        guidance_scale,
        callback,
        callback_steps,
        num_warmup_steps,
        extra_step_kwargs,
        cross_attention_kwargs=None,):
            do_classifier_free_guidance = guidance_scale > 1.0
            num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order
            import time
            if num_steps<10:
                with self.progress_bar(total=num_steps) as progress_bar:
                    for i, t in enumerate(timesteps):
                        setattr(self.unet, 'order', i)
                        # expand the latents if we are doing classifier free guidance
                        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                        # predict the noise residual
                        noise_pred = self.unet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=prompt_embeds,
                            cross_attention_kwargs=cross_attention_kwargs,
                        ).sample

                        # perform guidance
                        if do_classifier_free_guidance:
                            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                        # compute the previous noisy sample x_t -> x_t-1
                        latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                        # call the callback, if provided
                        if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                            progress_bar.update()
                            if callback is not None and i % callback_steps == 0:
                                step_idx = i // getattr(self.scheduler, "order", 1)
                                callback(step_idx, t, latents)

            else:
                all_timesteps = len(timesteps)
                curr_step = 0
   
                while curr_step<all_timesteps:
                    refister_time(self.unet, curr_step)

                    time_ls = []
                    time_ls.append(timesteps[curr_step])
                    curr_step += 1
                    cond = curr_step in [0,1,2,3,5,10,15,25,35]
                    
                    while (not cond) and (curr_step<all_timesteps):
                        time_ls.append(timesteps[curr_step])
                        curr_step += 1
                        cond = curr_step in [0,1,2,3,5,10,15,25,35]
                    
                    latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        time_ls,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                    ).sample

                    # perform guidance
                    if do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = multistep_pre(self, noise_pred, time_ls, latents)
             
            return latents.clone().detach()
        return backward_loop
    model.backward_loop = new_back(model)