michaelj's picture
AutoencoderTiny
b78962d
import gradio as gr
import modin.pandas as pd
import torch
import numpy as np
from PIL import Image
from diffusers import LCMScheduler,AutoencoderTiny, AutoPipelineForImage2Image
from diffusers.utils import load_image
import math
import time
model_id = "segmind/Segmind-Vega"
adapter_id = "segmind/Segmind-VegaRT"
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForImage2Image.from_pretrained(model_id, torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained(model_id)
pipe.vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesd",
use_safetensors=True,
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
def resize(w,h,img):
img = img.resize((w,h))
return img
def infer(source_img, prompt, steps, seed, Strength):
start = time.time()
print("开始")
img = Image.open(source_img)
generator = torch.Generator(device).manual_seed(seed)
if int(steps * Strength) < 1:
steps = math.ceil(1 / max(0.10, Strength))
w, h = img.size
newW = 512
newH = int(h * newW / w)
source_image = resize(newW,newH, img)
source_image.save('source.png')
image = pipe(prompt, image=source_image,width=newW,height=newH, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0]
end = time.time()
print("步数",steps)
print("时间",end-start)
return image
gr.Interface(fn=infer, inputs=[
gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
gr.Slider(label='Strength', minimum = 0.1, maximum = 1, step = .05, value = .5)],
outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL Turbo see https://huggingface.co/stabilityai/sdxl-turbo <br><br>Upload an Image, Use your Cam, or Paste an Image. Then enter a Prompt, or let it just do its Thing, then click submit. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic",
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=10).launch()