Spaces:
Sleeping
Sleeping
from chatgpt_service import ChatGPTService | |
from everything2text4prompt.everything2text4prompt import Everything2Text4Prompt | |
from everything2text4prompt.util import BaseData, YoutubeData, PodcastData | |
from gradio_method_service import YoutubeChain, GradioInputs | |
from digester.util import get_config, Prompt | |
import json | |
class VideoExample: | |
def __init__(self, title, description, transcript): | |
self.title = title | |
self.description = description | |
self.transcript = transcript | |
def get_youtube_data(cls, api_key: str, video_id: str): | |
converter = Everything2Text4Prompt(openai_api_key=api_key) | |
text_data, is_success, error_msg = converter.convert_text("youtube", video_id) | |
text_data: YoutubeData | |
title = text_data.title | |
description = text_data.description | |
transcript = text_data.full_content | |
ts_transcript_list = text_data.ts_transcript_list | |
return YoutubeData(transcript, title, description, ts_transcript_list) | |
def get_nthings_10_autogpt(): | |
video_id = "lSTEhG021Jc" | |
return VideoExample.get_youtube_data("", video_id) | |
def get_nthings_7_lifelesson(): | |
video_id = "CUPe_TZECQQ" | |
return VideoExample.get_youtube_data("", video_id) | |
def get_nthings_8_habits(): | |
video_id = "IScN1SOcj7A" | |
return VideoExample.get_youtube_data("", video_id) | |
def get_tutorial_skincare(): | |
video_id = "OrElyY7MFVs" | |
return VideoExample.get_youtube_data("", video_id) | |
def get_procrastination_long_vid(): | |
video_id = "lF_KWLfQFs8" | |
return VideoExample.get_youtube_data("", video_id) | |
def get_wealth_CN_long_vid(): | |
video_id = "6mVX78_nq0A" | |
return VideoExample.get_youtube_data("", video_id) | |
class YoutubeTestChain: | |
def __init__(self, api_key: str, gpt_model): | |
self.api_key = api_key | |
self.gpt_model = gpt_model | |
def run_testing_chain(self): | |
input_1 = """Give me 2 ideas for the summer""" | |
# input_1 = """Explain more on the first idea""" | |
response_1 = ChatGPTService.single_rest_call_chatgpt(self.api_key, input_1, self.gpt_model) | |
input_2 = """ | |
For the first idea, suggest some step by step planning for me | |
""" | |
response_2 = ChatGPTService.single_rest_call_chatgpt(self.api_key, input_2, self.gpt_model, history=[input_1, response_1]) | |
def test_youtube_classifier(self, gradio_inputs: GradioInputs, youtube_data: YoutubeData): | |
iter = YoutubeChain.execute_classifer_chain(gradio_inputs, youtube_data) | |
while True: | |
next(iter) | |
def test_youtube_timestamped_summary(self, gradio_inputs: GradioInputs, youtube_data: YoutubeData): | |
iter = YoutubeChain.execute_timestamped_summary_chain(gradio_inputs, youtube_data) | |
while True: | |
next(iter) | |
def test_youtube_final_summary(self, gradio_inputs: GradioInputs, youtube_data: YoutubeData, video_type): | |
iter = YoutubeChain.execute_final_summary_chain(gradio_inputs, youtube_data, video_type) | |
while True: | |
next(iter) | |
if __name__ == '__main__': | |
config = get_config() | |
api_key = config.get("openai").get("api_key") | |
GPT_MODEL = "gpt-3.5-turbo-16k" | |
assert api_key | |
language = "zh-CN" | |
gradio_inputs = GradioInputs(apikey_textbox=api_key, gpt_model_textbox=GPT_MODEL, | |
source_textbox="", source_target_textbox="", | |
qa_textbox="", language_textbox=language, chatbot=[], history=[]) | |
youtube_data: YoutubeData = VideoExample.get_nthings_10_autogpt() | |
youtube_test_chain = YoutubeTestChain(api_key, GPT_MODEL) | |
# youtube_test_chain.test_youtube_classifier(gradio_inputs, youtube_data) | |
# youtube_test_chain.test_youtube_timestamped_summary(gradio_inputs, youtube_data) | |
# video_type = "N things" | |
# video_type = "Tutorials" | |
video_type = "Others" | |
youtube_test_chain.test_youtube_final_summary(gradio_inputs, youtube_data, video_type) | |
# converter = Everything2Text4Prompt(openai_api_key="") | |
# source_textbox = "youtube" | |
# target_source_textbox = "CUPe_TZECQQ" | |
# text_data, is_success, error_msg = converter.convert_text(source_textbox, target_source_textbox) | |
# print(text_data.title) | |
# print(text_data.description) | |
# print(text_data.full_content) | |
# print(text_data.ts_transcript_list) | |