Spaces:
Runtime error
Runtime error
Commit
·
8981abe
1
Parent(s):
05b88bb
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
|
5 |
-
# Load the model using torch.hub (you must have the model locally)
|
6 |
-
model_name = "skin_burn_2022_8_21 (1).pt"
|
7 |
-
model =torch.hub.load("WongKinYiu/yolov7", 'custom',model_name)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import yolov7
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
+
# Images
|
7 |
+
torch.hub.download_url_to_file('https://github.com/Michael-OvO/Burn-Detection-Classification/blob/main/inference/images/1st_degree_1.jpg', '1st_degree_1.jpg')
|
8 |
+
torch.hub.download_url_to_file('https://github.com/Michael-OvO/Burn-Detection-Classification/blob/main/inference/images/3rd_degree_1.jpg', '3rd_degree_1.jpg')
|
9 |
+
|
10 |
+
def yolov7_inference(
|
11 |
+
image: gr.inputs.Image = None,
|
12 |
+
model_path: gr.inputs.Dropdown = None,
|
13 |
+
image_size: gr.inputs.Slider = 640,
|
14 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
15 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
YOLOv7 inference function
|
19 |
+
Args:
|
20 |
+
image: Input image
|
21 |
+
model_path: Path to the model
|
22 |
+
image_size: Image size
|
23 |
+
conf_threshold: Confidence threshold
|
24 |
+
iou_threshold: IOU threshold
|
25 |
+
Returns:
|
26 |
+
Rendered image
|
27 |
+
"""
|
28 |
|
29 |
+
model = torch.hub.load('WongKinYiu/yolov7', 'custom', path='path/to/best.pt', source='local', device="cpu", hf_model=True, trace=False)
|
30 |
+
model.conf = conf_threshold
|
31 |
+
model.iou = iou_threshold
|
32 |
+
results = model([image], size=image_size)
|
33 |
+
return results.render()[0]
|
34 |
+
|
35 |
+
|
36 |
+
inputs = [
|
37 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
38 |
+
gr.inputs.Dropdown(
|
39 |
+
choices=[
|
40 |
+
"skin_burn",
|
41 |
+
"kadirnar/yolov7-v0.1",
|
42 |
+
],
|
43 |
+
default="skin_burn",
|
44 |
+
label="Model",
|
45 |
+
),
|
46 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
47 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
48 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
49 |
+
]
|
50 |
|
51 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
52 |
+
title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors"
|
53 |
+
|
54 |
+
demo_app = gr.Interface(
|
55 |
+
fn=yolov7_inference,
|
56 |
+
inputs=inputs,
|
57 |
+
outputs=outputs,
|
58 |
+
title=title,
|
59 |
+
examples=examples,
|
60 |
+
cache_examples=True,
|
61 |
+
theme='huggingface',
|
62 |
+
)
|
63 |
+
demo_app.launch(debug=True, enable_queue=True)
|