|
import time |
|
from PIL import Image |
|
import gradio as gr |
|
from glob import glob |
|
import torch |
|
from transformers import AutoModel, AutoProcessor |
|
|
|
DEFAULT_EXAMPLE_PATH = f'examples/example_0' |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
weight_dtype = torch.bfloat16 if device == "cuda" else torch.float32 |
|
print(f"Using device: {device} ({weight_dtype})") |
|
print("Loading model...") |
|
model_pretrained_name_or_path = "facebook/metaclip-h14-fullcc2.5b" |
|
processor = AutoProcessor.from_pretrained(model_pretrained_name_or_path) |
|
model = AutoModel.from_pretrained(model_pretrained_name_or_path, torch_dtype=weight_dtype).eval().to(device) |
|
print("Model loaded.") |
|
|
|
|
|
def calc_probs(prompt, images): |
|
print("Processing inputs...") |
|
image_inputs = processor( |
|
images=images, |
|
padding=True, |
|
truncation=True, |
|
max_length=77, |
|
return_tensors="pt", |
|
).to(device) |
|
|
|
image_inputs = {k: v.to(weight_dtype) for k, v in image_inputs.items()} |
|
|
|
text_inputs = processor( |
|
text=prompt, |
|
padding=True, |
|
truncation=True, |
|
max_length=77, |
|
return_tensors="pt", |
|
).to(device) |
|
|
|
with torch.no_grad(): |
|
print("Embedding images and text...") |
|
image_embs = model.get_image_features(**image_inputs) |
|
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) |
|
|
|
text_embs = model.get_text_features(**text_inputs) |
|
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True) |
|
|
|
print("Calculating scores...") |
|
scores = model.logit_scale.exp() * (text_embs.float() @ image_embs.float().T)[0] |
|
|
|
print("Calculating probabilities...") |
|
probs = torch.softmax(scores, dim=-1) |
|
|
|
return probs.cpu().tolist() |
|
|
|
|
|
def predict(prompt, image_1, image_2): |
|
print(f"Starting prediction for prompt: {prompt}") |
|
start_time = time.time() |
|
probs = calc_probs(prompt, [image_1, image_2]) |
|
print(f"Prediction: {probs} ({time.time() - start_time:.2f} seconds, ) ") |
|
if device == "cuda": |
|
print(f"GPU mem used: {round(torch.cuda.max_memory_allocated(device) / 1024 / 1024 / 1024, 2)}/{round(torch.cuda.get_device_properties(device).total_memory / 1024 / 1024 / 1024, 2)} GB") |
|
return str(round(probs[0], 3)), str(round(probs[1], 3)) |
|
|
|
|
|
with gr.Blocks(title="PickScore v1") as demo: |
|
gr.Markdown("# PickScore v1") |
|
gr.Markdown( |
|
"This is a demo for the PickScore model - see [paper](https://arxiv.org/abs/2305.01569), [code](https://github.com/yuvalkirstain/PickScore), [dataset](https://huggingface.co/datasets/pickapic-anonymous/pickapic_v1), and [model](https://huggingface.co/yuvalkirstain/PickScore_v1).") |
|
gr.Markdown("## Instructions") |
|
gr.Markdown("Write a prompt, place two images, and press run to get their PickScore!") |
|
with gr.Row(): |
|
prompt = gr.inputs.Textbox(lines=1, label="Prompt", |
|
default=open(f'{DEFAULT_EXAMPLE_PATH}/prompt.txt').readline()) |
|
with gr.Row(): |
|
image_1 = gr.components.Image(type="pil", label="image 1", |
|
value=Image.open(f'{DEFAULT_EXAMPLE_PATH}/image_1.png')) |
|
image_2 = gr.components.Image(type="pil", label="image 2", |
|
value=Image.open(f'{DEFAULT_EXAMPLE_PATH}/image_2.png')) |
|
with gr.Row(): |
|
pred_1 = gr.outputs.Textbox(label="Probability 1") |
|
pred_2 = gr.outputs.Textbox(label="Probability 2") |
|
|
|
btn = gr.Button("Run") |
|
btn.click(fn=predict, inputs=[prompt, image_1, image_2], outputs=[pred_1, pred_2]) |
|
prompt.change(lambda: ("", ""), inputs=[], outputs=[pred_1, pred_2]) |
|
|
|
gr.Examples( |
|
[[open(f'{path}/prompt.txt').readline(), f'{path}/image_1.png', f'{path}/image_2.png'] for path in |
|
glob(f'examples/*')], |
|
[prompt, image_1, image_2], |
|
[pred_1, pred_2], |
|
predict |
|
) |
|
|
|
demo.queue(concurrency_count=5).launch() |
|
|