File size: 839 Bytes
53a85b7 4691dfa 5a4af7d 4691dfa 5a4af7d 0ec5efc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import transformers
from transformers import BartForSequenceClassification, BartTokenizer
import gradio as grad
bart_tkn = BartTokenizer.from_pretrained('oigele/Fb_improved_zeroshot')
mdl = BartForSequenceClassification.from_pretrained('oigele/Fb_improved_zeroshot')
def classify(text,label):
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt')
tkn_lgts = mdl(tkn_ids)[0]
entail_contra_tkn_lgts = tkn_lgts[:,[0,2]]
probab = entail_contra_tkn_lgts.softmax(dim=1)
response = probab[:,1].item() * 100
return response
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label")
out=grad.Textbox(lines=1, label="Probablity of label being true is")
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() |